Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Publication Date: 2015-07-23
    Description: Chronic lymphocytic leukaemia (CLL) is a frequent disease in which the genetic alterations determining the clinicobiological behaviour are not fully understood. Here we describe a comprehensive evaluation of the genomic landscape of 452 CLL cases and 54 patients with monoclonal B-lymphocytosis, a precursor disorder. We extend the number of CLL driver alterations, including changes in ZNF292, ZMYM3, ARID1A and PTPN11. We also identify novel recurrent mutations in non-coding regions, including the 3' region of NOTCH1, which cause aberrant splicing events, increase NOTCH1 activity and result in a more aggressive disease. In addition, mutations in an enhancer located on chromosome 9p13 result in reduced expression of the B-cell-specific transcription factor PAX5. The accumulative number of driver alterations (0 to 〉/=4) discriminated between patients with differences in clinical behaviour. This study provides an integrated portrait of the CLL genomic landscape, identifies new recurrent driver mutations of the disease, and suggests clinical interventions that may improve the management of this neoplasia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Puente, Xose S -- Bea, Silvia -- Valdes-Mas, Rafael -- Villamor, Neus -- Gutierrez-Abril, Jesus -- Martin-Subero, Jose I -- Munar, Marta -- Rubio-Perez, Carlota -- Jares, Pedro -- Aymerich, Marta -- Baumann, Tycho -- Beekman, Renee -- Belver, Laura -- Carrio, Anna -- Castellano, Giancarlo -- Clot, Guillem -- Colado, Enrique -- Colomer, Dolors -- Costa, Dolors -- Delgado, Julio -- Enjuanes, Anna -- Estivill, Xavier -- Ferrando, Adolfo A -- Gelpi, Josep L -- Gonzalez, Blanca -- Gonzalez, Santiago -- Gonzalez, Marcos -- Gut, Marta -- Hernandez-Rivas, Jesus M -- Lopez-Guerra, Monica -- Martin-Garcia, David -- Navarro, Alba -- Nicolas, Pilar -- Orozco, Modesto -- Payer, Angel R -- Pinyol, Magda -- Pisano, David G -- Puente, Diana A -- Queiros, Ana C -- Quesada, Victor -- Romeo-Casabona, Carlos M -- Royo, Cristina -- Royo, Romina -- Rozman, Maria -- Russinol, Nuria -- Salaverria, Itziar -- Stamatopoulos, Kostas -- Stunnenberg, Hendrik G -- Tamborero, David -- Terol, Maria J -- Valencia, Alfonso -- Lopez-Bigas, Nuria -- Torrents, David -- Gut, Ivo -- Lopez-Guillermo, Armando -- Lopez-Otin, Carlos -- Campo, Elias -- England -- Nature. 2015 Oct 22;526(7574):519-24. doi: 10.1038/nature14666. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departamento de Bioquimica y Biologia Molecular, Instituto Universitario de Oncologia (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain. ; Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain. ; Unitat de Hematologia, Hospital Clinic, IDIBAPS, Universitat de Barcelona, 08036 Barcelona, Spain. ; Departament d'Anatomia Patologica, Microbiologia i Farmacologia, Universitat de Barcelona, 08036 Barcelona, Spain. ; Programa Conjunto de Biologia Computacional, Barcelona Supercomputing Center (BSC), Institut de Recerca Biomedica (IRB), Spanish National Bioinformatics Institute, Universitat de Barcelona, 08028 Barcelona, Spain. ; Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain. ; Unidad de Genomica, IDIBAPS, 08036 Barcelona, Spain. ; Servicio de Hematologia, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain. ; Institute for Cancer Genetics, Columbia University, New York 10032, USA. ; Servicio de Hematologia, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain. ; Center for Genomic Regulation (CRG), Pompeu Fabra University (UPF), Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain. ; Servicio de Hematologia, IBSAL-Hospital Universitario de Salamanca, Centro de Investigacion del Cancer, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain. ; Centro Nacional de Analisis Genomico, Parc Cientific de Barcelona, 08028 Barcelona, Spain. ; Catedra Inter-Universitaria de Derecho y Genoma Humano, Universidad de Deusto, Universidad del Pais Vasco, 48007 Bilbao, Spain. ; Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Spanish National Bioinformatics Institute, 28029 Madrid, Spain. ; Institute of Applied Biosciences, Center for Research and Technology Hellas, 57001 Thermi, Thessaloniki, Greece. ; Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands. ; Servicio de Hematologia, Hospital Clinico de Valencia, 46010 Valencia, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/genetics ; Alternative Splicing/genetics ; B-Cell-Specific Activator Protein/biosynthesis/genetics ; B-Lymphocytes/metabolism ; Carrier Proteins/genetics ; Chromosomes, Human, Pair 9/genetics ; DNA Mutational Analysis ; DNA, Neoplasm/genetics ; Enhancer Elements, Genetic/genetics ; Genomics ; Humans ; Leukemia, Lymphocytic, Chronic, B-Cell/*genetics/metabolism/pathology ; Mutation/*genetics ; Nerve Tissue Proteins/genetics ; Nuclear Proteins/genetics ; Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics ; Receptor, Notch1/genetics/metabolism ; Transcription Factors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2018-03-16
    Description: Purpose: The classification of medulloblastoma into WNT, SHH, group 3, and group 4 subgroups has become of critical importance for patient risk stratification and subgroup-tailored clinical trials. Here, we aimed to develop a simplified, clinically applicable classification approach that can be implemented in the majority of centers treating patients with medulloblastoma. Experimental Design: We analyzed 1,577 samples comprising previously published DNA methylation microarray data (913 medulloblastomas, 457 non-medulloblastoma tumors, 85 normal tissues), and 122 frozen and formalin-fixed paraffin-embedded medulloblastoma samples. Biomarkers were identified applying stringent selection filters and Linear Discriminant Analysis (LDA) method, and validated using DNA methylation microarray data, bisulfite pyrosequencing, and direct-bisulfite sequencing. Results: Using a LDA-based approach, we developed and validated a prediction method ( Epi WNT-SHH classifier) based on six epigenetic biomarkers that allowed for rapid classification of medulloblastoma into the clinically relevant subgroups WNT, SHH, and non-WNT/non-SHH with excellent concordance (〉99%) with current gold-standard methods, DNA methylation microarray, and gene signature profiling analysis. The Epi WNT-SHH classifier showed high prediction capacity using both frozen and formalin-fixed material, as well as diverse DNA methylation detection methods. Similarly, we developed a classifier specific for group 3 and group 4 tumors, based on five biomarkers ( Epi G3-G4) with good discriminatory capacity, allowing for correct assignment of more than 92% of tumors. Epi WNT-SHH and Epi G3-G4 methylation profiles remained stable across tumor primary, metastasis, and relapse samples. Conclusions: The Epi WNT-SHH and Epi G3-G4 classifiers represent a new simplified approach for accurate, rapid, and cost-effective molecular classification of single medulloblastoma DNA samples, using clinically applicable DNA methylation detection methods. Clin Cancer Res; 24(6); 1355–63. ©2018 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    American Society of Hematology (ASH)
    In: Blood
    Publication Date: 2018-09-07
    Description: Understanding how tumor cells fundamentally alter their identity is critical to identify specific vulnerabilities for use in precision medicine. In B-cell malignancy, knowledge of genetic changes has resulted in great gains in our understanding of the biology of tumor cells, impacting diagnosis, prognosis, and treatment. Despite this knowledge, much remains to be explained as genetic events do not completely explain clinical behavior and outcomes. Many patients lack recurrent driver mutations, and said drivers can persist in nonmalignant cells of healthy individuals remaining cancer-free for decades. Epigenetics has emerged as a valuable avenue to further explain tumor phenotypes. The epigenetic landscape is the software that powers and stabilizes cellular identity by abridging a broad genome into the essential information required per cell. A genome-level view of B-cell malignancies reveals complex but recurrent epigenetic patterns that define tumor types and subtypes, permitting high-resolution classification and novel insight into tumor-specific mechanisms. Epigenetic alterations are guided by distinct cellular processes, such as polycomb-based silencing, transcription, signaling pathways, and transcription factor activity, and involve B-cell-specific aspects, such as activation-induced cytidine deaminase activity and germinal center–specific events. Armed with a detailed knowledge of the epigenetic events that occur across the spectrum of B-cell differentiation, B-cell tumor–specific aberrations can be detected with improved accuracy and serve as a model for identification of tumor-specific events in cancer. Insight gained through recent efforts may prove valuable in guiding the use of both epigenetic- and nonepigenetic-based therapies.
    Keywords: Perspectives, Lymphoid Neoplasia
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...