Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-03-25
    Description: Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the data set. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-kappaB signalling was indicated by mutations in 11 members of the NF-kappaB pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560292/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560292/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, Michael A -- Lawrence, Michael S -- Keats, Jonathan J -- Cibulskis, Kristian -- Sougnez, Carrie -- Schinzel, Anna C -- Harview, Christina L -- Brunet, Jean-Philippe -- Ahmann, Gregory J -- Adli, Mazhar -- Anderson, Kenneth C -- Ardlie, Kristin G -- Auclair, Daniel -- Baker, Angela -- Bergsagel, P Leif -- Bernstein, Bradley E -- Drier, Yotam -- Fonseca, Rafael -- Gabriel, Stacey B -- Hofmeister, Craig C -- Jagannath, Sundar -- Jakubowiak, Andrzej J -- Krishnan, Amrita -- Levy, Joan -- Liefeld, Ted -- Lonial, Sagar -- Mahan, Scott -- Mfuko, Bunmi -- Monti, Stefano -- Perkins, Louise M -- Onofrio, Robb -- Pugh, Trevor J -- Rajkumar, S Vincent -- Ramos, Alex H -- Siegel, David S -- Sivachenko, Andrey -- Stewart, A Keith -- Trudel, Suzanne -- Vij, Ravi -- Voet, Douglas -- Winckler, Wendy -- Zimmerman, Todd -- Carpten, John -- Trent, Jeff -- Hahn, William C -- Garraway, Levi A -- Meyerson, Matthew -- Lander, Eric S -- Getz, Gad -- Golub, Todd R -- K12 CA133250/CA/NCI NIH HHS/ -- R01 AG020686/AG/NIA NIH HHS/ -- R01 AG020686-07/AG/NIA NIH HHS/ -- R01 CA133115/CA/NCI NIH HHS/ -- R01 CA133115-04/CA/NCI NIH HHS/ -- R01 CA133966/CA/NCI NIH HHS/ -- R01 CA133966-03/CA/NCI NIH HHS/ -- England -- Nature. 2011 Mar 24;471(7339):467-72. doi: 10.1038/nature09837.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Eli and Edythe L. Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02412, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21430775" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Blood Coagulation/genetics ; CpG Islands/genetics ; DNA Mutational Analysis ; DNA Repair/genetics ; Exons/genetics ; Exosome Multienzyme Ribonuclease Complex ; Genome, Human/*genetics ; Genomics ; Histones/metabolism ; Homeodomain Proteins/genetics ; Homeostasis/genetics ; Humans ; Methylation ; Models, Molecular ; Molecular Sequence Data ; Multiple Myeloma/drug therapy/enzymology/*genetics/metabolism ; Mutation/*genetics ; NF-kappa B/metabolism ; Oncogenes/genetics ; Open Reading Frames/genetics ; Protein Biosynthesis/genetics ; Protein Conformation ; Proto-Oncogene Proteins B-raf/antagonists & inhibitors/genetics/metabolism ; RNA Processing, Post-Transcriptional/genetics ; Ribonucleases/chemistry/genetics ; Signal Transduction/genetics ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-16
    Description: Improving outcomes in multiple myeloma will involve not only development of new therapies but also better use of existing treatments. We performed RNA sequencing on samples from newly diagnosed patients enrolled in the phase 2 PADIMAC (Bortezomib, Adriamycin, and Dexamethasone Therapy for Previously Untreated Patients with Multiple Myeloma: Impact of Minimal Residual Disease in Patients with Deferred ASCT) study. Using synthetic annealing and the large margin nearest neighbor algorithm, we developed and trained a 7-gene signature to predict treatment outcome. We tested the signature in independent cohorts treated with bortezomib- and lenalidomide-based therapies. The signature was capable of distinguishing which patients would respond better to which regimen. In the CoMMpass data set, patients who were treated correctly according to the signature had a better progression-free survival (median, 20.1 months vs not reached; hazard ratio [HR], 0.40; confidence interval [CI], 0.23-0.72; P = .0012) and overall survival (median, 30.7 months vs not reached; HR, 0.41; CI, 0.21-0.80; P = .0049) than those who were not. Indeed, the outcome for these correctly treated patients was noninferior to that for those treated with combined bortezomib, lenalidomide, and dexamethasone, arguably the standard of care in the United States but not widely available elsewhere. The small size of the signature will facilitate clinical translation, thus enabling more targeted drug regimens to be delivered in myeloma.
    Keywords: Multiple Myeloma, Lymphoid Neoplasia
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-05-16
    Description: Purpose: Myeloma is a plasma cell malignancy characterized by the overproduction of immunoglobulin, and is therefore susceptible to therapies targeting protein homeostasis. We hypothesized that heat shock factor 1 (HSF1) was an attractive therapeutic target for myeloma due to its direct regulation of transcriptional programs implicated in both protein homeostasis and the oncogenic phenotype. Here, we interrogate HSF1 as a therapeutic target in myeloma using bioinformatic, genetic, and pharmacologic means. Experimental Design: To assess the clinical relevance of HSF1, we analyzed publicly available patient myeloma gene expression datasets. Validation of this novel target was conducted in in vitro experiments using shRNA or inhibitors of the HSF1 pathway in human myeloma cell lines and primary cells as well as in in vivo human myeloma xenograft models. Results: Expression of HSF1 and its target genes were associated with poorer myeloma patient survival. ShRNA-mediated knockdown or pharmacologic inhibition of the HSF1 pathway with a novel chemical probe, CCT251236, or with KRIBB11, led to caspase-mediated cell death that was associated with an increase in EIF2α phosphorylation, CHOP expression and a decrease in overall protein synthesis. Importantly, both CCT251236 and KRIBB11 induced cytotoxicity in human myeloma cell lines and patient-derived primary myeloma cells with a therapeutic window over normal cells. Pharmacologic inhibition induced tumor growth inhibition and was well-tolerated in a human myeloma xenograft murine model with evidence of pharmacodynamic biomarker modulation. Conclusions: Taken together, our studies demonstrate the dependence of myeloma cells on HSF1 for survival and support the clinical evaluation of pharmacologic inhibitors of the HSF1 pathway in myeloma. Clin Cancer Res; 24(10); 2395–407. ©2018 AACR . See related commentary by Parekh, p. 2237
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...