Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-04-12
    Description: Obtaining high-resolution information from a complex system, while maintaining the global perspective needed to understand system function, represents a key challenge in biology. Here we address this challenge with a method (termed CLARITY) for the transformation of intact tissue into a nanoporous hydrogel-hybridized form (crosslinked to a three-dimensional network of hydrophilic polymers) that is fully assembled but optically transparent and macromolecule-permeable. Using mouse brains, we show intact-tissue imaging of long-range projections, local circuit wiring, cellular relationships, subcellular structures, protein complexes, nucleic acids and neurotransmitters. CLARITY also enables intact-tissue in situ hybridization, immunohistochemistry with multiple rounds of staining and de-staining in non-sectioned tissue, and antibody labelling throughout the intact adult mouse brain. Finally, we show that CLARITY enables fine structural analysis of clinical samples, including non-sectioned human tissue from a neuropsychiatric-disease setting, establishing a path for the transmutation of human tissue into a stable, intact and accessible form suitable for probing structural and molecular underpinnings of physiological function and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4092167/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4092167/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Kwanghun -- Wallace, Jenelle -- Kim, Sung-Yon -- Kalyanasundaram, Sandhiya -- Andalman, Aaron S -- Davidson, Thomas J -- Mirzabekov, Julie J -- Zalocusky, Kelly A -- Mattis, Joanna -- Denisin, Aleksandra K -- Pak, Sally -- Bernstein, Hannah -- Ramakrishnan, Charu -- Grosenick, Logan -- Gradinaru, Viviana -- Deisseroth, Karl -- DP1 OD000616/OD/NIH HHS/ -- R01 DA020794/DA/NIDA NIH HHS/ -- R01 MH099647/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 May 16;497(7449):332-7. doi: 10.1038/nature12107. Epub 2013 Apr 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23575631" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*anatomy & histology ; Cross-Linking Reagents/chemistry ; Formaldehyde/chemistry ; Humans ; Hydrogel/chemistry ; Imaging, Three-Dimensional/*methods ; In Situ Hybridization/methods ; Lipids/isolation & purification ; Mice ; Molecular Imaging/*methods ; Permeability ; Phenotype ; Scattering, Radiation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-12-14
    Description: Major depression is characterized by diverse debilitating symptoms that include hopelessness and anhedonia. Dopamine neurons involved in reward and motivation are among many neural populations that have been hypothesized to be relevant, and certain antidepressant treatments, including medications and brain stimulation therapies, can influence the complex dopamine system. Until now it has not been possible to test this hypothesis directly, even in animal models, as existing therapeutic interventions are unable to specifically target dopamine neurons. Here we investigated directly the causal contributions of defined dopamine neurons to multidimensional depression-like phenotypes induced by chronic mild stress, by integrating behavioural, pharmacological, optogenetic and electrophysiological methods in freely moving rodents. We found that bidirectional control (inhibition or excitation) of specified midbrain dopamine neurons immediately and bidirectionally modulates (induces or relieves) multiple independent depression symptoms caused by chronic stress. By probing the circuit implementation of these effects, we observed that optogenetic recruitment of these dopamine neurons potently alters the neural encoding of depression-related behaviours in the downstream nucleus accumbens of freely moving rodents, suggesting that processes affecting depression symptoms may involve alterations in the neural encoding of action in limbic circuitry.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160519/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160519/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tye, Kay M -- Mirzabekov, Julie J -- Warden, Melissa R -- Ferenczi, Emily A -- Tsai, Hsing-Chen -- Finkelstein, Joel -- Kim, Sung-Yon -- Adhikari, Avishek -- Thompson, Kimberly R -- Andalman, Aaron S -- Gunaydin, Lisa A -- Witten, Ilana B -- Deisseroth, Karl -- DP2 DA035149/DA/NIDA NIH HHS/ -- F32 MH880102/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jan 24;493(7433):537-41. doi: 10.1038/nature11740. Epub 2012 Dec 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Picower Institute for Learning and Memory, Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. kaytye@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23235822" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Depression/chemically induced/*physiopathology ; Dopamine/metabolism ; Dopaminergic Neurons/drug effects/*metabolism/radiation effects ; Female ; Male ; Mice ; Models, Neurological ; Nucleus Accumbens/metabolism ; Optogenetics ; Phenotype ; Rats ; Rats, Long-Evans ; Stress, Psychological/physiopathology ; Time Factors ; Ventral Tegmental Area/cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-05
    Description: Anxiety-related conditions are among the most difficult neuropsychiatric diseases to treat pharmacologically, but respond to cognitive therapies. There has therefore been interest in identifying relevant top-down pathways from cognitive control regions in medial prefrontal cortex (mPFC). Identification of such pathways could contribute to our understanding of the cognitive regulation of affect, and provide pathways for intervention. Previous studies have suggested that dorsal and ventral mPFC subregions exert opposing effects on fear, as do subregions of other structures. However, precise causal targets for top-down connections among these diverse possibilities have not been established. Here we show that the basomedial amygdala (BMA) represents the major target of ventral mPFC in amygdala in mice. Moreover, BMA neurons differentiate safe and aversive environments, and BMA activation decreases fear-related freezing and high-anxiety states. Lastly, we show that the ventral mPFC-BMA projection implements top-down control of anxiety state and learned freezing, both at baseline and in stress-induced anxiety, defining a broadly relevant new top-down behavioural regulation pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adhikari, Avishek -- Lerner, Talia N -- Finkelstein, Joel -- Pak, Sally -- Jennings, Joshua H -- Davidson, Thomas J -- Ferenczi, Emily -- Gunaydin, Lisa A -- Mirzabekov, Julie J -- Ye, Li -- Kim, Sung-Yon -- Lei, Anna -- Deisseroth, Karl -- 1F32MH105053-01/MH/NIMH NIH HHS/ -- K99 MH106649/MH/NIMH NIH HHS/ -- K99MH106649/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Nov 12;527(7577):179-85. doi: 10.1038/nature15698. Epub 2015 Nov 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, Stanford University, Stanford, California 94305, USA. ; CNC Program, Stanford University, Stanford, California 94304, USA. ; Neurosciences Program, Stanford University, Stanford, California 94305, USA. ; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305, USA. ; Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26536109" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/cytology/*physiology ; Animals ; Anxiety/*physiopathology/psychology ; Extinction, Psychological/physiology ; Fear/*physiology/psychology ; Female ; Freezing Reaction, Cataleptic/physiology ; Learning/physiology ; Male ; Mice ; Mice, Inbred C57BL ; Neural Pathways/*physiology ; Prefrontal Cortex/cytology/physiology ; Stress, Psychological/physiopathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-11-20
    Description: The prefrontal cortex (PFC) is thought to participate in high-level control of the generation of behaviours (including the decision to execute actions); indeed, imaging and lesion studies in human beings have revealed that PFC dysfunction can lead to either impulsive states with increased tendency to initiate action, or to amotivational states characterized by symptoms such as reduced activity, hopelessness and depressed mood. Considering the opposite valence of these two phenotypes as well as the broad complexity of other tasks attributed to PFC, we sought to elucidate the PFC circuitry that favours effortful behavioural responses to challenging situations. Here we develop and use a quantitative method for the continuous assessment and control of active response to a behavioural challenge, synchronized with single-unit electrophysiology and optogenetics in freely moving rats. In recording from the medial PFC (mPFC), we observed that many neurons were not simply movement-related in their spike-firing patterns but instead were selectively modulated from moment to moment, according to the animal's decision to act in a challenging situation. Surprisingly, we next found that direct activation of principal neurons in the mPFC had no detectable causal effect on this behaviour. We tested whether this behaviour could be causally mediated by only a subclass of mPFC cells defined by specific downstream wiring. Indeed, by leveraging optogenetic projection-targeting to control cells with specific efferent wiring patterns, we found that selective activation of those mPFC cells projecting to the brainstem dorsal raphe nucleus (DRN), a serotonergic nucleus implicated in major depressive disorder, induced a profound, rapid and reversible effect on selection of the active behavioural state. These results may be of importance in understanding the neural circuitry underlying normal and pathological patterns of action selection and motivation in behaviour.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warden, Melissa R -- Selimbeyoglu, Aslihan -- Mirzabekov, Julie J -- Lo, Maisie -- Thompson, Kimberly R -- Kim, Sung-Yon -- Adhikari, Avishek -- Tye, Kay M -- Frank, Loren M -- Deisseroth, Karl -- 1F32MH088010-01/MH/NIMH NIH HHS/ -- F32 MH088010/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Dec 20;492(7429):428-32. doi: 10.1038/nature11617.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, Stanford University, Stanford, California 94305, USA. mwarden@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23160494" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Axons/physiology ; Behavior, Animal/*physiology ; Depression/psychology ; Electrophysiology ; Locomotion/physiology ; Male ; Motivation/*physiology ; Neurons/*physiology ; Optogenetics ; Prefrontal Cortex/*physiology ; Raphe Nuclei/*physiology ; Rats ; Rats, Long-Evans ; Swimming/*physiology ; Synapses/physiology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...