Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-08-16
    Description: Adenomatous polyposis coli (APC) is a key molecule to maintain cellular homeostasis in colonic epithelium by regulating cell-cell adhesion, cell polarity, and cell migration through activating the APC-stimulated guanine nucleotide-exchange factor (Asef). The APC-activated Asef stimulates the small GTPase, which leads to decreased cell-cell adherence and cell polarity, and enhanced cell migration. In colorectal cancers, while truncated APC constitutively activates Asef and promotes cancer initiation and progression, regulation of Asef by full-length APC is still unclear. Here, we report the autoinhibition mechanism of full-length APC. We found that the armadillo repeats in full-length APC interact with the APC residues 1362 to 1540 (APC-2,3 repeats), and this interaction competes off and inhibits Asef. Deletion of APC-2,3 repeats permits Asef interactions leading to downstream signaling events, including the induction of Golgi fragmentation through the activation of the Asef-ROCK-MLC2. Truncated APC also disrupts protein trafficking and cholesterol homeostasis by inhibition of SREBP2 activity in a Golgi fragmentation-dependent manner. Our study thus uncovers the autoinhibition mechanism of full-length APC and a novel gain of function of truncated APC in regulating Golgi structure, as well as cholesterol homeostasis, which provides a potential target for pharmaceutical intervention against colon cancers.
    Print ISSN: 0270-7306
    Electronic ISSN: 1098-5549
    Topics: Biology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-02
    Description: Purpose: M2-type TAMs are increasingly implicated as a crucial factor promoting metastasis. Numerous cell types dictate monocyte differentiation into M2 TAMs via a complex network of cytokine-based communication. Elucidating critical pathways in this network can provide new targets for inhibiting metastasis. In this study, we focused on cancer cells, CAFs, and monocytes as a major node in this network. Experimental Design: Monocyte cocultures with cancer-stimulated CAFs were used to investigate differentiation into M2-like TAMs. Cytokine array analyses were employed to discover the CAF-derived regulators of differentiation. These regulators were validated in primary CAFs and bone marrow-derived monocytes. Orthotopic, syngeneic colon carcinoma models using cotransplanted CAFs were established to observe effects on tumor growth and metastasis. To confirm a correlation with clinical evidence, meta-analyses were employed using the Oncomine database. Results: Our coculture studies identify IL6 and GM-CSF as the pivotal signals released from cancer cell–activated CAFs that cooperate to induce monocyte differentiation into M2-like TAMs. In orthotopic, syngeneic colon carcinoma mouse models, cotransplanted CAFs elevated IL6 and GM-CSF levels, TAM infiltration, and metastasis. These pathologic effects were dramatically reversed by joint IL6 and GM-CSF blockade. A positive correlation between GM-CSF and IL6 expression and disease course was observed by meta-analyses of the clinical data. Conclusions: Our studies indicate a significant reappraisal of the role of IL6 and GM-CSF in metastasis and implicate CAFs as the "henchmen" for cancer cells in producing an immunosuppressive tumor ecological niche. Dual targeting of GM-CSF and IL6 is a promising new approach for inhibiting metastasis. Clin Cancer Res; 24(21); 5407–21. ©2018 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-15
    Description: The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF 〈/= 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4755714/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4755714/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, Hou-Feng -- Forgetta, Vincenzo -- Hsu, Yi-Hsiang -- Estrada, Karol -- Rosello-Diez, Alberto -- Leo, Paul J -- Dahia, Chitra L -- Park-Min, Kyung Hyun -- Tobias, Jonathan H -- Kooperberg, Charles -- Kleinman, Aaron -- Styrkarsdottir, Unnur -- Liu, Ching-Ti -- Uggla, Charlotta -- Evans, Daniel S -- Nielson, Carrie M -- Walter, Klaudia -- Pettersson-Kymmer, Ulrika -- McCarthy, Shane -- Eriksson, Joel -- Kwan, Tony -- Jhamai, Mila -- Trajanoska, Katerina -- Memari, Yasin -- Min, Josine -- Huang, Jie -- Danecek, Petr -- Wilmot, Beth -- Li, Rui -- Chou, Wen-Chi -- Mokry, Lauren E -- Moayyeri, Alireza -- Claussnitzer, Melina -- Cheng, Chia-Ho -- Cheung, Warren -- Medina-Gomez, Carolina -- Ge, Bing -- Chen, Shu-Huang -- Choi, Kwangbom -- Oei, Ling -- Fraser, James -- Kraaij, Robert -- Hibbs, Matthew A -- Gregson, Celia L -- Paquette, Denis -- Hofman, Albert -- Wibom, Carl -- Tranah, Gregory J -- Marshall, Mhairi -- Gardiner, Brooke B -- Cremin, Katie -- Auer, Paul -- Hsu, Li -- Ring, Sue -- Tung, Joyce Y -- Thorleifsson, Gudmar -- Enneman, Anke W -- van Schoor, Natasja M -- de Groot, Lisette C P G M -- van der Velde, Nathalie -- Melin, Beatrice -- Kemp, John P -- Christiansen, Claus -- Sayers, Adrian -- Zhou, Yanhua -- Calderari, Sophie -- van Rooij, Jeroen -- Carlson, Chris -- Peters, Ulrike -- Berlivet, Soizik -- Dostie, Josee -- Uitterlinden, Andre G -- Williams, Stephen R -- Farber, Charles -- Grinberg, Daniel -- LaCroix, Andrea Z -- Haessler, Jeff -- Chasman, Daniel I -- Giulianini, Franco -- Rose, Lynda M -- Ridker, Paul M -- Eisman, John A -- Nguyen, Tuan V -- Center, Jacqueline R -- Nogues, Xavier -- Garcia-Giralt, Natalia -- Launer, Lenore L -- Gudnason, Vilmunder -- Mellstrom, Dan -- Vandenput, Liesbeth -- Amin, Najaf -- van Duijn, Cornelia M -- Karlsson, Magnus K -- Ljunggren, Osten -- Svensson, Olle -- Hallmans, Goran -- Rousseau, Francois -- Giroux, Sylvie -- Bussiere, Johanne -- Arp, Pascal P -- Koromani, Fjorda -- Prince, Richard L -- Lewis, Joshua R -- Langdahl, Bente L -- Hermann, A Pernille -- Jensen, Jens-Erik B -- Kaptoge, Stephen -- Khaw, Kay-Tee -- Reeve, Jonathan -- Formosa, Melissa M -- Xuereb-Anastasi, Angela -- Akesson, Kristina -- McGuigan, Fiona E -- Garg, Gaurav -- Olmos, Jose M -- Zarrabeitia, Maria T -- Riancho, Jose A -- Ralston, Stuart H -- Alonso, Nerea -- Jiang, Xi -- Goltzman, David -- Pastinen, Tomi -- Grundberg, Elin -- Gauguier, Dominique -- Orwoll, Eric S -- Karasik, David -- Davey-Smith, George -- AOGC Consortium -- Smith, Albert V -- Siggeirsdottir, Kristin -- Harris, Tamara B -- Zillikens, M Carola -- van Meurs, Joyce B J -- Thorsteinsdottir, Unnur -- Maurano, Matthew T -- Timpson, Nicholas J -- Soranzo, Nicole -- Durbin, Richard -- Wilson, Scott G -- Ntzani, Evangelia E -- Brown, Matthew A -- Stefansson, Kari -- Hinds, David A -- Spector, Tim -- Cupples, L Adrienne -- Ohlsson, Claes -- Greenwood, Celia M T -- UK10K Consortium -- Jackson, Rebecca D -- Rowe, David W -- Loomis, Cynthia A -- Evans, David M -- Ackert-Bicknell, Cheryl L -- Joyner, Alexandra L -- Duncan, Emma L -- Kiel, Douglas P -- Rivadeneira, Fernando -- Richards, J Brent -- G1000143/Medical Research Council/United Kingdom -- K01 AR062655/AR/NIAMS NIH HHS/ -- MC_UU_12013/3/Medical Research Council/United Kingdom -- R01 AG005394/AG/NIA NIH HHS/ -- R01 AG005407/AG/NIA NIH HHS/ -- R01 AG027574/AG/NIA NIH HHS/ -- R01 AG027576/AG/NIA NIH HHS/ -- R01 AR035582/AR/NIAMS NIH HHS/ -- R01 AR035583/AR/NIAMS NIH HHS/ -- RC2 AR058973/AR/NIAMS NIH HHS/ -- U01 AG018197/AG/NIA NIH HHS/ -- U01 AG042140/AG/NIA NIH HHS/ -- U01 AG042143/AG/NIA NIH HHS/ -- U01 AR045580/AR/NIAMS NIH HHS/ -- U01 AR045583/AR/NIAMS NIH HHS/ -- U01 AR045614/AR/NIAMS NIH HHS/ -- U01 AR045632/AR/NIAMS NIH HHS/ -- U01 AR045647/AR/NIAMS NIH HHS/ -- U01 AR045654/AR/NIAMS NIH HHS/ -- U01 AR066160/AR/NIAMS NIH HHS/ -- England -- Nature. 2015 Oct 1;526(7571):112-7. doi: 10.1038/nature14878. Epub 2015 Sep 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Medicine, Human Genetics, Epidemiology and Biostatistics, McGill University, Montreal H3A 1A2, Canada. ; Department of Medicine, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal H3T 1E2, Canada. ; Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts 02131, USA. ; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Broad Institute of MIT and Harvard, Boston, Massachusetts 02115, USA. ; Department of Internal Medicine, Erasmus Medical Center, Rotterdam 3015GE, The Netherlands. ; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA. ; The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Brisbane 4102, Australia. ; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York 10065, USA. ; Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, New York 10021, USA. ; Rheumatology Divison, Hospital for Special Surgery New York, New York 10021, USA. ; School of Clinical Science, University of Bristol, Bristol BS10 5NB, UK. ; MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK. ; Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. ; Department of Research, 23andMe, Mountain View, California 94041, USA. ; Department of Population Genomics, deCODE Genetics, Reykjavik IS-101, Iceland. ; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118, USA. ; Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden. ; California Pacific Medical Center Research Institute, San Francisco, California 94158, USA. ; Department of Public Health and Preventive Medicine, Oregon Health &Science University, Portland, Oregon 97239, USA. ; Bone &Mineral Unit, Oregon Health &Science University, Portland, Oregon 97239, USA. ; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK. ; Departments of Pharmacology and Clinical Neurosciences, Umea University, Umea S-901 87, Sweden. ; Department of Public Health and Clinical Medicine, Umea University, Umea SE-901 87, Sweden. ; Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden. ; McGill University and Genome Quebec Innovation Centre, Montreal H3A 0G1, Canada. ; Department of Epidemiology, Erasmus Medical Center, Rotterdam 3015GE, The Netherlands. ; Oregon Clinical and Translational Research Institute, Oregon Health &Science University, Portland, Oregon 97239, USA. ; Department of Medical and Clinical Informatics, Oregon Health &Science University, Portland, Oregon 97239, USA. ; Farr Institute of Health Informatics Research, University College London, London NW1 2DA, UK. ; Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK. ; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA. ; Department of Human Genetics, McGill University, Montreal H3A 1B1, Canada. ; Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Leiden 2300RC, The Netherlands. ; Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642, USA. ; Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal H3G 1Y6, Canada. ; Department of Computer Science, Trinity University, San Antonio, Texas 78212, USA. ; Musculoskeletal Research Unit, University of Bristol, Bristol BS10 5NB, UK. ; Department of Radiation Sciences, Umea University, Umea S-901 87, Sweden. ; School of Public Health, University of Wisconsin, Milwaukee, Wisconsin 53726, USA. ; School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK. ; Department of Statistics, deCODE Genetics, Reykjavik IS-101, Iceland. ; Department of Epidemiology and Biostatistics and the EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam 1007 MB, The Netherlands. ; Department of Human Nutrition, Wageningen University, Wageningen 6700 EV, The Netherlands. ; Department of Internal Medicine, Section Geriatrics, Academic Medical Center, Amsterdam 1105, The Netherlands. ; Nordic Bioscience, Herlev 2730, Denmark. ; Cordeliers Research Centre, INSERM UMRS 1138, Paris 75006, France. ; Institute of Cardiometabolism and Nutrition, University Pierre &Marie Curie, Paris 75013, France. ; Departments of Medicine (Cardiovascular Medicine), Centre for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22908, USA. ; Department of Genetics, University of Barcelona, Barcelona 08028, Spain. ; U-720, Centre for Biomedical Network Research on Rare Diseases (CIBERER), Barcelona 28029, Spain. ; Department of Human Molecular Genetics, The Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona 08028, Spain. ; Women's Health Center of Excellence Family Medicine and Public Health, University of California - San Diego, San Diego, California 92093, USA. ; Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA. ; Osteoporosis &Bone Biology Program, Garvan Institute of Medical Research, Sydney 2010, Australia. ; School of Medicine Sydney, University of Notre Dame Australia, Sydney 6959, Australia. ; St. Vincent's Hospital &Clinical School, NSW University, Sydney 2010, Australia. ; Musculoskeletal Research Group, Institut Hospital del Mar d'Investigacions Mediques, Barcelona 08003, Spain. ; Cooperative Research Network on Aging and Fragility (RETICEF), Institute of Health Carlos III, 28029, Spain. ; Department of Internal Medicine, Hospital del Mar, Universitat Autonoma de Barcelona, Barcelona 08193, Spain. ; Neuroepidemiology Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Icelandic Heart Association, Kopavogur IS-201, Iceland. ; Faculty of Medicine, University of Iceland, Reykjavik IS-101, Iceland. ; Genetic epidemiology unit, Department of Epidemiology, Erasmus MC, Rotterdam 3000CA, The Netherlands. ; Department of Orthopaedics, Skane University Hospital Malmo 205 02, Sweden. ; Department of Medical Sciences, University of Uppsala, Uppsala 751 85, Sweden. ; Department of Surgical and Perioperative Sciences, Umea Unviersity, Umea 901 85, Sweden. ; Department of Molecular Biology, Medical Biochemistry and Pathology, Universite Laval, Quebec City G1V 0A6, Canada. ; Axe Sante des Populations et Pratiques Optimales en Sante, Centre de recherche du CHU de Quebec, Quebec City G1V 4G2, Canada. ; Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands 6009, Australia. ; Department of Medicine, University of Western Australia, Perth 6009, Australia. ; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C 8000, Denmark. ; Department of Endocrinology, Odense University Hospital, Odense C 5000, Denmark. ; Department of Endocrinology, Hvidovre University Hospital, Hvidovre 2650, Denmark. ; Clinical Gerontology Unit, University of Cambridge, Cambridge CB2 2QQ, UK. ; Medicine and Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK. ; Institute of Musculoskeletal Sciences, The Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK. ; Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida MSD 2080, Malta. ; Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences Malmo, Lund University, 205 02, Sweden. ; Department of Medicine and Psychiatry, University of Cantabria, Santander 39011, Spain. ; Department of Internal Medicine, Hospital U.M. Valdecilla- IDIVAL, Santander 39008, Spain. ; Department of Legal Medicine, University of Cantabria, Santander 39011, Spain. ; Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK. ; Department of Reconstructive Sciences, College of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA. ; Department of Medicine and Physiology, McGill University, Montreal H4A 3J1, Canada. ; Department of Medicine, Oregon Health &Science University, Portland, Oregon 97239, USA. ; Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 13010, Israel. ; Laboratory of Epidemiology, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; School of Medicine and Pharmacology, University of Western Australia, Crawley 6009, Australia. ; Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina 45110, Greece. ; Department of Health Services, Policy and Practice, Brown University School of Public Health, Providence, Rhode Island 02903, USA. ; deCODE Genetics, Reykjavik IS-101, Iceland. ; Framingham Heart Study, Framingham, Massachusetts 01702, USA. ; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal H3A 1A2, Canada. ; Department of Oncology, Gerald Bronfman Centre, McGill University, Montreal H2W 1S6, Canada. ; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, Ohio 43210, USA. ; The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA. ; Department of Diabetes and Endocrinology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26367794" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Density/*genetics ; Bone and Bones/metabolism ; Disease Models, Animal ; Europe/ethnology ; European Continental Ancestry Group/genetics ; Exome/genetics ; Female ; Fractures, Bone/*genetics ; Gene Frequency/genetics ; Genetic Predisposition to Disease/genetics ; Genetic Variation/genetics ; Genome, Human/*genetics ; Genomics ; Genotype ; Homeodomain Proteins/*genetics ; Humans ; Mice ; Sequence Analysis, DNA ; Wnt Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-25
    Description: The carboxy-terminal domain (CTD) of the RNA polymerase II (RNAP II) subunit POLR2A is a platform for modifications specifying the recruitment of factors that regulate transcription, mRNA processing, and chromatin remodelling. Here we show that a CTD arginine residue (R1810 in human) that is conserved across vertebrates is symmetrically dimethylated (me2s). This R1810me2s modification requires protein arginine methyltransferase 5 (PRMT5) and recruits the Tudor domain of the survival of motor neuron (SMN, also known as GEMIN1) protein, which is mutated in spinal muscular atrophy. SMN interacts with senataxin, which is sometimes mutated in ataxia oculomotor apraxia type 2 and amyotrophic lateral sclerosis. Because POLR2A R1810me2s and SMN, like senataxin, are required for resolving RNA-DNA hybrids created by RNA polymerase II that form R-loops in transcription termination regions, we propose that R1810me2s, SMN, and senataxin are components of an R-loop resolution pathway. Defects in this pathway can influence transcription termination and may contribute to neurodegenerative disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Dorothy Yanling -- Gish, Gerald -- Braunschweig, Ulrich -- Li, Yue -- Ni, Zuyao -- Schmitges, Frank W -- Zhong, Guoqing -- Liu, Ke -- Li, Weiguo -- Moffat, Jason -- Vedadi, Masoud -- Min, Jinrong -- Pawson, Tony J -- Blencowe, Benjamin J -- Greenblatt, Jack F -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2016 Jan 7;529(7584):48-53. doi: 10.1038/nature16469. Epub 2015 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada. ; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada. ; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4, Canada. ; Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26700805" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/*metabolism ; Cell Line ; DNA Damage ; Humans ; Methylation ; Neurodegenerative Diseases/genetics ; Protein Binding ; Protein Structure, Tertiary ; Protein-Arginine N-Methyltransferases/genetics/metabolism ; RNA Helicases/genetics/metabolism ; RNA Polymerase II/*chemistry/*metabolism ; Survival of Motor Neuron 1 Protein/genetics/*metabolism ; Transcription Elongation, Genetic ; *Transcription Termination, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-06-28
    Description: The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr BP). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski's horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0-4.5 million years before present (Myr BP), twice the conventionally accepted time to the most recent common ancestor of the genus Equus. We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski's and domestic horse populations diverged 38-72 kyr BP, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski's horse investigated. This supports the contention that Przewalski's horses represent the last surviving wild horse population. We find similar levels of genetic variation among Przewalski's and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski's horse. Such regions could correspond to loci selected early during domestication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Orlando, Ludovic -- Ginolhac, Aurelien -- Zhang, Guojie -- Froese, Duane -- Albrechtsen, Anders -- Stiller, Mathias -- Schubert, Mikkel -- Cappellini, Enrico -- Petersen, Bent -- Moltke, Ida -- Johnson, Philip L F -- Fumagalli, Matteo -- Vilstrup, Julia T -- Raghavan, Maanasa -- Korneliussen, Thorfinn -- Malaspinas, Anna-Sapfo -- Vogt, Josef -- Szklarczyk, Damian -- Kelstrup, Christian D -- Vinther, Jakob -- Dolocan, Andrei -- Stenderup, Jesper -- Velazquez, Amhed M V -- Cahill, James -- Rasmussen, Morten -- Wang, Xiaoli -- Min, Jiumeng -- Zazula, Grant D -- Seguin-Orlando, Andaine -- Mortensen, Cecilie -- Magnussen, Kim -- Thompson, John F -- Weinstock, Jacobo -- Gregersen, Kristian -- Roed, Knut H -- Eisenmann, Vera -- Rubin, Carl J -- Miller, Donald C -- Antczak, Douglas F -- Bertelsen, Mads F -- Brunak, Soren -- Al-Rasheid, Khaled A S -- Ryder, Oliver -- Andersson, Leif -- Mundy, John -- Krogh, Anders -- Gilbert, M Thomas P -- Kjaer, Kurt -- Sicheritz-Ponten, Thomas -- Jensen, Lars Juhl -- Olsen, Jesper V -- Hofreiter, Michael -- Nielsen, Rasmus -- Shapiro, Beth -- Wang, Jun -- Willerslev, Eske -- RC2 HG005598/HG/NHGRI NIH HHS/ -- England -- Nature. 2013 Jul 4;499(7456):74-8. doi: 10.1038/nature12323. Epub 2013 Jun 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen K, Denmark. Lorlando@snm.ku.dk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23803765" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conservation of Natural Resources ; DNA/analysis/genetics ; Endangered Species ; Equidae/classification/genetics ; *Evolution, Molecular ; Fossils ; Genetic Variation/genetics ; Genome/*genetics ; History, Ancient ; Horses/classification/*genetics ; *Phylogeny ; Proteins/analysis/chemistry/genetics ; Yukon Territory
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-04-27
    Description: Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphomas (EBV + -DLBLs) tend to occur in immunocompromised patients, such as the elderly or those undergoing solid organ transplantation. The pathogenesis and genomic characteristics of EBV + -DLBLs are largely unknown because of the limited availability of human samples and lack of experimental animal models. We observed the development of 25 human EBV + -DLBLs during the engraftment of gastric adenocarcinomas into immunodeficient mice. An integrated genomic analysis of the human-derived EBV + -DLBLs revealed enrichment of mutations in Rho pathway genes, including RHPN2 , and Rho pathway transcriptomic activation. Targeting the Rho pathway using a Rho-associated protein kinase (ROCK) inhibitor, fasudil, markedly decreased tumor growth in EBV + -DLBL patient-derived xenograft (PDX) models. Thus, alterations in the Rho pathway appear to contribute to EBV-induced lymphomagenesis in immunosuppressed environments.
    Keywords: Immunobiology and Immunotherapy, Lymphoid Neoplasia
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-07-30
    Description: Multidrug tolerance is largely responsible for chronic infections and caused by a small population of dormant cells called persisters. Selection for survival in the presence of antibiotics produced the first genetic link to multidrug tolerance: a mutant in the Escherichia coli hipA locus. HipA encodes a serine-protein kinase, the multidrug tolerance activity of which is neutralized by binding to the transcriptional regulator HipB and hipBA promoter. The physiological role of HipA in multidrug tolerance, however, has been unclear. Here we show that wild-type HipA contributes to persister formation and that high-persister hipA mutants cause multidrug tolerance in urinary tract infections. Perplexingly, high-persister mutations map to the N-subdomain-1 of HipA far from its active site. Structures of higher-order HipA-HipB-promoter complexes reveal HipA forms dimers in these assemblies via N-subdomain-1 interactions that occlude their active sites. High-persistence mutations, therefore, diminish HipA-HipA dimerization, thereby unleashing HipA to effect multidrug tolerance. Thus, our studies reveal the mechanistic basis of heritable, clinically relevant antibiotic tolerance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schumacher, Maria A -- Balani, Pooja -- Min, Jungki -- Chinnam, Naga Babu -- Hansen, Sonja -- Vulic, Marin -- Lewis, Kim -- Brennan, Richard G -- R01GM061162/GM/NIGMS NIH HHS/ -- T-R01 AI085585/AI/NIAID NIH HHS/ -- England -- Nature. 2015 Aug 6;524(7563):59-64. doi: 10.1038/nature14662. Epub 2015 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA. ; Antimicrobial Discovery Center, Northeastern University, Department of Biology, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26222023" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0304-8853
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    ISSN: 0304-8853
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    ISSN: 0304-8853
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...