Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-03-27
    Description: Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 x 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tombesi, F -- Melendez, M -- Veilleux, S -- Reeves, J N -- Gonzalez-Alfonso, E -- Reynolds, C S -- England -- Nature. 2015 Mar 26;519(7544):436-8. doi: 10.1038/nature14261.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] X-ray Astrophysics Laboratory, NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771, USA [2] Department of Astronomy and CRESST, University of Maryland, College Park, Maryland 20742, USA. ; Department of Astronomy and CRESST, University of Maryland, College Park, Maryland 20742, USA. ; 1] Department of Astronomy and CRESST, University of Maryland, College Park, Maryland 20742, USA [2] Joint Space Science Institute, University of Maryland, College Park, Maryland 20742, USA. ; 1] Astrophysics Group, School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK [2] Center for Space Science and Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA. ; Universidad de Alcala, Departamento de Fisica y Matematicas, Campus Universitario, E-28871 Alcala de Henares, Madrid, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25810204" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-02-24
    Description: The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different epochs, we detected the signatures of a nearly spherical stream of highly ionized gas in the broadband x-ray spectra of the luminous quasar PDS 456. This persistent wind is expelled at relativistic speeds from the inner accretion disk, and its wide aperture suggests an effective coupling with the ambient gas. The outflow's kinetic power larger than 10(46) ergs per second is enough to provide the feedback required by models of black hole and host galaxy coevolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nardini, E -- Reeves, J N -- Gofford, J -- Harrison, F A -- Risaliti, G -- Braito, V -- Costa, M T -- Matzeu, G A -- Walton, D J -- Behar, E -- Boggs, S E -- Christensen, F E -- Craig, W W -- Hailey, C J -- Matt, G -- Miller, J M -- O'Brien, P T -- Stern, D -- Turner, T J -- Ward, M J -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):860-3. doi: 10.1126/science.1259202.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Astrophysics Group, School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK. e.nardini@keele.ac.uk. ; Astrophysics Group, School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK. Center for Space Science and Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA. ; Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA. ; Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze, Italy. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA. ; INAF, Osservatorio Astronomico di Brera, Via Bianchi 46, I-23807 Merate (LC), Italy. ; Astrophysics Group, School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK. ; Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA. ; Department of Physics, Technion, Haifa 32000, Israel. ; Space Science Laboratory, University of California, Berkeley, CA 94720, USA. ; Danmarks Tekniske Universitet Space-National Space Institute, Technical University of Denmark, Elektrovej 327, 2800 Lyngby, Denmark. ; Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. ; Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA. ; Dipartimento di Matematica e Fisica, Universita degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy. ; Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA. ; Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK. ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA. ; Physics Department, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA. Eureka Scientific Inc., 2452 Delmer Street Suite 100, Oakland, CA 94602, USA. ; Department of Physics, University of Durham, South Road, Durham DH1 3LE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700515" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Now that γ-ray bursts (GRBs) have been determined to lie at cosmological distances, their isotropic burst energies are estimated to be as high as 1054 erg (ref. 2), making them the most energetic phenomena in the Universe. The nature of the progenitors ...
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...