Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-06-28
    Description: Centrosomes organize the bipolar mitotic spindle, and centrosomal defects cause chromosome instability. Protein phosphorylation modulates centrosome function, and we provide a comprehensive map of phosphorylation on intact yeast centrosomes (18 proteins). Mass spectrometry was used to identify 297 phosphorylation sites on centrosomes from different cell cycle stages. We observed different modes of phosphoregulation via specific protein kinases, phosphorylation site clustering, and conserved phosphorylated residues. Mutating all eight cyclin-dependent kinase (Cdk)-directed sites within the core component, Spc42, resulted in lethality and reduced centrosomal assembly. Alternatively, mutation of one conserved Cdk site within gamma-tubulin (Tub4-S360D) caused mitotic delay and aberrant anaphase spindle elongation. Our work establishes the extent and complexity of this prominent posttranslational modification in centrosome biology and provides specific examples of phosphorylation control in centrosome function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3825980/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3825980/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keck, Jamie M -- Jones, Michele H -- Wong, Catherine C L -- Binkley, Jonathan -- Chen, Daici -- Jaspersen, Sue L -- Holinger, Eric P -- Xu, Tao -- Niepel, Mario -- Rout, Michael P -- Vogel, Jackie -- Sidow, Arend -- Yates, John R 3rd -- Winey, Mark -- F32 GM086038/GM/NIGMS NIH HHS/ -- GM51312/GM/NIGMS NIH HHS/ -- MOP-64404/Canadian Institutes of Health Research/Canada -- P41 RR011823/RR/NCRR NIH HHS/ -- R01 GM051312/GM/NIGMS NIH HHS/ -- R01 GM051312-16/GM/NIGMS NIH HHS/ -- R01 GM051312-16S1/GM/NIGMS NIH HHS/ -- R01 GM062427/GM/NIGMS NIH HHS/ -- R01 HG003039/HG/NHGRI NIH HHS/ -- T32 GM008759/GM/NIGMS NIH HHS/ -- U54 RR022220/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2011 Jun 24;332(6037):1557-61. doi: 10.1126/science.1205193.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21700874" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; CDC2 Protein Kinase/metabolism ; *Cell Cycle ; Centrosome/*metabolism/ultrastructure ; Cytoskeletal Proteins/genetics/metabolism ; Fungal Proteins/chemistry/metabolism ; Fungi/metabolism ; G1 Phase ; Mitosis ; Mutation ; Phosphoproteins/genetics/metabolism ; Phosphorylation ; Protein Processing, Post-Translational ; Proteome/*metabolism ; Saccharomyces cerevisiae/cytology/genetics/growth & development/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Spindle Apparatus/metabolism/ultrastructure ; Tubulin/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-02-08
    Description: Mammalian telomeres repress DNA-damage activation at natural chromosome ends by recruiting specific inhibitors of the DNA-damage machinery that form a protective complex termed shelterin. Within this complex, TRF2 (also known as TERF2) has a crucial role in end protection through the suppression of ATM activation and the formation of end-to-end chromosome fusions. Here we address the molecular properties of TRF2 that are both necessary and sufficient to protect chromosome ends in mouse embryonic fibroblasts. Our data support a two-step mechanism for TRF2-mediated end protection. First, the dimerization domain of TRF2 is required to inhibit ATM activation, the key initial step involved in the activation of a DNA-damage response (DDR). Next, TRF2 independently suppresses the propagation of DNA-damage signalling downstream of ATM activation. This novel modulation of the DDR at telomeres occurs at the level of the E3 ubiquitin ligase RNF168 (ref. 3). Inhibition of RNF168 at telomeres involves the deubiquitinating enzyme BRCC3 and the ubiquitin ligase UBR5, and is sufficient to suppress chromosome end-to-end fusions. This two-step mechanism for TRF2-mediated end protection helps to explain the apparent paradox of frequent localization of DDR proteins at functional telomeres without concurrent induction of detrimental DNA-repair activities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3733551/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3733551/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okamoto, Keiji -- Bartocci, Cristina -- Ouzounov, Iliana -- Diedrich, Jolene K -- Yates, John R 3rd -- Denchi, Eros Lazzerini -- 5P41RR011823-17/RR/NCRR NIH HHS/ -- 8 P41 GM103533-17/GM/NIGMS NIH HHS/ -- AG038677/AG/NIA NIH HHS/ -- P41 GM103533/GM/NIGMS NIH HHS/ -- P41 RR011823/RR/NCRR NIH HHS/ -- R01 AG038677/AG/NIA NIH HHS/ -- England -- Nature. 2013 Feb 28;494(7438):502-5. doi: 10.1038/nature11873. Epub 2013 Feb 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromosome Biology and Genomic Stability, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23389450" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/antagonists & inhibitors/metabolism ; Chromosomal Proteins, Non-Histone/metabolism ; Chromosomes, Mammalian/genetics/metabolism ; DNA Damage ; DNA Repair ; DNA-Binding Proteins/antagonists & inhibitors/metabolism ; Endopeptidases/deficiency/metabolism ; Enzyme Activation ; Mice ; Protein Multimerization ; Protein Structure, Tertiary ; Protein Transport ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Signal Transduction ; Telomere/genetics/metabolism ; Telomeric Repeat Binding Protein 2/chemistry/*metabolism ; Tumor Suppressor Proteins/antagonists & inhibitors/metabolism ; Ubiquitin-Protein Ligases/antagonists & inhibitors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-01
    Description: Deletion of phenylalanine 508 of the cystic fibrosis transmembrane conductance regulator (F508 CFTR) is the major cause of cystic fibrosis, one of the most common inherited childhood diseases. The mutated CFTR anion channel is not fully glycosylated and shows minimal activity in bronchial epithelial cells of patients with cystic fibrosis. Low temperature or inhibition of histone deacetylases can partly rescue F508 CFTR cellular processing defects and function. A favourable change of F508 CFTR protein-protein interactions was proposed as a mechanism of rescue; however, CFTR interactome dynamics during temperature shift and inhibition of histone deacetylases are unknown. Here we report the first comprehensive analysis of the CFTR and F508 CFTR interactome and its dynamics during temperature shift and inhibition of histone deacetylases. By using a novel deep proteomic analysis method, we identify 638 individual high-confidence CFTR interactors and discover a F508 deletion-specific interactome, which is extensively remodelled upon rescue. Detailed analysis of the interactome remodelling identifies key novel interactors, whose loss promote F508 CFTR channel function in primary cystic fibrosis epithelia or which are critical for CFTR biogenesis. Our results demonstrate that global remodelling of F508 CFTR interactions is crucial for rescue, and provide comprehensive insight into the molecular disease mechanisms of cystic fibrosis caused by deletion of F508.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pankow, Sandra -- Bamberger, Casimir -- Calzolari, Diego -- Martinez-Bartolome, Salvador -- Lavallee-Adam, Mathieu -- Balch, William E -- Yates, John R 3rd -- 5R01HL079442-08/HL/NHLBI NIH HHS/ -- HHSN268201000035C/PHS HHS/ -- P01 AG031097/AG/NIA NIH HHS/ -- P01AG031097/AG/NIA NIH HHS/ -- P41 GM103533/GM/NIGMS NIH HHS/ -- R01 HL079442/HL/NHLBI NIH HHS/ -- R01DK051870/DK/NIDDK NIH HHS/ -- R01HL095524/HL/NHLBI NIH HHS/ -- England -- Nature. 2015 Dec 24;528(7583):510-6. doi: 10.1038/nature15729. Epub 2015 Nov 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. ; Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26618866" target="_blank"〉PubMed〈/a〉
    Keywords: Bronchi/cytology ; Cells, Cultured ; Cystic Fibrosis/genetics/*metabolism/*therapy ; Cystic Fibrosis Transmembrane Conductance ; Regulator/biosynthesis/*genetics/*metabolism ; Epithelial Cells/chemistry/metabolism ; Gene Knockdown Techniques ; Glycosylation ; Histone Deacetylase Inhibitors/pharmacology ; Histone Deacetylases/deficiency/metabolism ; Humans ; Mutant Proteins/genetics/metabolism ; Protein Folding ; Protein Interaction Mapping ; *Protein Interaction Maps ; Proteomics ; RNA Interference ; RNAi Therapeutics ; Sequence Deletion/*genetics ; Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-04
    Description: To combat the functional decline of the proteome, cells use the process of protein turnover to replace potentially impaired polypeptides with new functional copies. We found that extremely long-lived proteins (ELLPs) did not turn over in postmitotic cells of the rat central nervous system. These ELLPs were associated with chromatin and the nuclear pore complex, the central transport channels that mediate all molecular trafficking in and out of the nucleus. The longevity of these proteins would be expected to expose them to potentially harmful metabolites, putting them at risk of accumulating damage over extended periods of time. Thus, it is possible that failure to maintain proper levels and functional integrity of ELLPs in nonproliferative cells might contribute to age-related deterioration in cell and tissue function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296478/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296478/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Savas, Jeffrey N -- Toyama, Brandon H -- Xu, Tao -- Yates, John R 3rd -- Hetzer, Martin W -- F32 AG039127/AG/NIA NIH HHS/ -- F32 AG039127-01A1/AG/NIA NIH HHS/ -- F32AG039127/AG/NIA NIH HHS/ -- HHSN268201000035C/PHS HHS/ -- P01 AG031097/AG/NIA NIH HHS/ -- P01 AG031097-03/AG/NIA NIH HHS/ -- P30 CA014195/CA/NCI NIH HHS/ -- P30 CA014195-35/CA/NCI NIH HHS/ -- P41 RR011823/RR/NCRR NIH HHS/ -- P41 RR011823-14/RR/NCRR NIH HHS/ -- R01 MH067880/MH/NIMH NIH HHS/ -- R01 MH067880-08/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 24;335(6071):942. doi: 10.1126/science.1217421. Epub 2012 Feb 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22300851" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/cytology/*metabolism ; Cell Aging ; Chromatin/metabolism ; Female ; Half-Life ; Liver/metabolism ; Mitosis ; Nuclear Pore/*metabolism ; Nuclear Pore Complex Proteins/*metabolism ; Proteome/metabolism ; Rats ; Rats, Sprague-Dawley ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-10-18
    Description: The conserved heat shock transcription factor-1 (HSF-1) is essential to cellular stress resistance and life-span determination. The canonical function of HSF-1 is to regulate a network of genes encoding molecular chaperones that protect proteins from damage caused by extrinsic environmental stress or intrinsic age-related deterioration. In Caenorhabditis elegans, we engineered a modified HSF-1 strain that increased stress resistance and longevity without enhanced chaperone induction. This health assurance acted through the regulation of the calcium-binding protein PAT-10. Loss of pat-10 caused a collapse of the actin cytoskeleton, stress resistance, and life span. Furthermore, overexpression of pat-10 increased actin filament stability, thermotolerance, and longevity, indicating that in addition to chaperone regulation, HSF-1 has a prominent role in cytoskeletal integrity, ensuring cellular function during stress and aging.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403873/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403873/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baird, Nathan A -- Douglas, Peter M -- Simic, Milos S -- Grant, Ana R -- Moresco, James J -- Wolff, Suzanne C -- Yates, John R 3rd -- Manning, Gerard -- Dillin, Andrew -- 1K99AG042495-01A1/AG/NIA NIH HHS/ -- 5P41RR011823-17/RR/NCRR NIH HHS/ -- 8 P41 GM103533-17/GM/NIGMS NIH HHS/ -- P01 AG031097/AG/NIA NIH HHS/ -- P40 OD010440/OD/NIH HHS/ -- P41 GM103533/GM/NIGMS NIH HHS/ -- R01AG027463-04/AG/NIA NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Oct 17;346(6207):360-3. doi: 10.1126/science.1253168.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA. ; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA. ; Scripps Research Institute, La Jolla, CA 92037, USA. ; Genentech, South San Francisco, CA 94080, USA. ; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA. dillin@berkeley.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25324391" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Caenorhabditis elegans/genetics/*physiology ; Caenorhabditis elegans Proteins/genetics/*pharmacology/*physiology ; Cytoskeleton/*physiology/ultrastructure ; Heat-Shock Response/genetics/*physiology ; Hot Temperature ; *Longevity ; RNA Interference ; Transcription Factors/genetics/*physiology ; Troponin C/genetics/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: The lateral habenula (LHb) has recently emerged as a key brain region in the pathophysiology of depression. However, the molecular mechanism by which LHb becomes hyperactive in depression remains unknown. Through a quantitative proteomic screen, we found that expression of the beta form of calcium/calmodulin-dependent protein kinase type II (betaCaMKappaIotaIota) was significantly up-regulated in the LHb of animal models of depression and down-regulated by antidepressants. Increasing beta-, but not alpha-, CaMKII in the LHb strongly enhanced the synaptic efficacy and spike output of LHb neurons and was sufficient to produce profound depressive symptoms, including anhedonia and behavioral despair. Down-regulation of betaCaMKII levels, blocking its activity or its target molecule the glutamate receptor GluR1 reversed the depressive symptoms. These results identify betaCaMKII as a powerful regulator of LHb neuron function and a key molecular determinant of depression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932364/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932364/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Kun -- Zhou, Tao -- Liao, Lujian -- Yang, Zhongfei -- Wong, Catherine -- Henn, Fritz -- Malinow, Roberto -- Yates, John R 3rd -- Hu, Hailan -- P41 GM103533/GM/NIGMS NIH HHS/ -- R01 MH067880/MH/NIMH NIH HHS/ -- R01 MH091119/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 30;341(6149):1016-20. doi: 10.1126/science.1240729.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P R China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23990563" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antidepressive Agents/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & ; inhibitors/*biosynthesis/genetics ; Depressive Disorder, Major/*enzymology/genetics/psychology ; Disease Models, Animal ; Gene Knockdown Techniques ; Habenula/drug effects/*enzymology ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Neurons/drug effects/enzymology ; Promoter Regions, Genetic ; Proteomics ; Rats ; Rats, Sprague-Dawley
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-04-13
    Description: Scaffold-assisted signaling cascades guide cellular decision-making. In budding yeast, one such signal transduction pathway called the mitotic exit network (MEN) governs the transition from mitosis to the G1 phase of the cell cycle. The MEN is conserved and in metazoans is known as the Hippo tumor-suppressor pathway. We found that signaling through the MEN kinase cascade was mediated by an unusual two-step process. The MEN kinase Cdc15 first phosphorylated the scaffold Nud1. This created a phospho-docking site on Nud1, to which the effector kinase complex Dbf2-Mob1 bound through a phosphoserine-threonine binding domain, in order to be activated by Cdc15. This mechanism of pathway activation has implications for signal transmission through other kinase cascades and might represent a general principle in scaffold-assisted signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3884217/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3884217/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rock, Jeremy M -- Lim, Daniel -- Stach, Lasse -- Ogrodowicz, Roksana W -- Keck, Jamie M -- Jones, Michele H -- Wong, Catherine C L -- Yates, John R 3rd -- Winey, Mark -- Smerdon, Stephen J -- Yaffe, Michael B -- Amon, Angelika -- CA112967/CA/NCI NIH HHS/ -- ES015339/ES/NIEHS NIH HHS/ -- F32 GM086038/GM/NIGMS NIH HHS/ -- GM056800/GM/NIGMS NIH HHS/ -- GM51312/GM/NIGMS NIH HHS/ -- MC_U117584228/Medical Research Council/United Kingdom -- P30 CA014051/CA/NCI NIH HHS/ -- P41 GM103533/GM/NIGMS NIH HHS/ -- P41 RR011823/RR/NCRR NIH HHS/ -- R01 ES015339/ES/NIEHS NIH HHS/ -- R01 GM051312/GM/NIGMS NIH HHS/ -- R01 GM056800/GM/NIGMS NIH HHS/ -- R29 GM056800/GM/NIGMS NIH HHS/ -- U117584228/Medical Research Council/United Kingdom -- U54 CA112967/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 May 17;340(6134):871-5. doi: 10.1126/science.1235822. Epub 2013 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23579499" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; Cell Cycle Proteins/chemistry/*metabolism ; Deoxyribonucleases/chemistry/*metabolism ; Enzyme Activation ; GTP-Binding Proteins/*metabolism ; *Mitosis ; Phosphoproteins/chemistry/*metabolism ; Phosphorylation ; Protein Conformation ; Protein-Serine-Threonine Kinases/*metabolism ; Saccharomyces cerevisiae/cytology/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism ; Signal Transduction ; tRNA Methyltransferases/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...