Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Publication Date: 2018-01-04
    Description: Purpose: Lyso-thermosensitive liposomal doxorubicin (LTLD) consists of doxorubicin contained within a heat-sensitive liposome. When heated to ≥40°C, LTLD locally releases a high concentration of doxorubicin. We aimed to determine whether adding LTLD improves the efficacy of radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC) lesions with a maximum diameter ( d max ) of 3 to 7 cm. Experimental Design: The HEAT Study was a randomized, double-blind, dummy-controlled trial of RFA ± LTLD. The 701 enrolled patients had to have ≤4 unresectable HCC lesions, at least one of which had a d max of 3 to 7 cm. The primary endpoint was progression-free survival (PFS) and a key secondary endpoint was overall survival (OS). Post hoc subset analyses investigated whether RFA duration was associated with efficacy. Results: The primary endpoint was not met; in intention-to-treat analysis, the PFS HR of RFA + LTLD versus RFA alone was 0.96 [95% confidence interval (CI), 0.79-1.18; P = 0.71], and the OS HR ratio was 0.95 (95% CI, 0.76–1.20; P = 0.67). Among 285 patients with a solitary HCC lesion who received ≥45 minutes RFA dwell time, the OS HR was 0.63 (95% CI, 0.41–0.96; P 〈 0.05) in favor of combination therapy. RFA + LTLD had reversible myelosuppression similar to free doxorubicin. Conclusions: Adding LTLD to RFA was safe but did not increase PFS or OS in the overall study population. However, consistent with LTLD's heat-based mechanism of action, subgroup analysis suggested that RFA + LTLD efficacy is improved when RFA dwell time for a solitary lesion ≥45 minutes. Clin Cancer Res; 24(1); 73–83. ©2017 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-15
    Description: Objectives Although sleep, chronic disease and its related mortality are extensively studied areas, the association between stroke and sleep duration is relatively unknown. The aim of this study was to investigate the association between long and short sleep duration and stroke prevalence. Design A cross-sectional survey study. Setting and participants Adult surveyees (aged ≥19 years) who answered items relating to sleep duration and stroke in the 2010–2014 Korean National Health and Nutrition Surveys (n=17 601). Outcome measures Participants were divided into three groups by sleep duration (short: ≤6 hours/day, normal: 7–8 hours/day and long: ≥9 hours/day). Stroke prevalence in each sleep duration group was compared using logistic regression analysis, and sociodemographic characteristics, medical history, lifestyle habits and mental health factors were set as confounding variables. Results On adjusting for sex and age, each sleep-duration group displayed significantly different health-related characteristics. The short sleep and long sleep duration groups indicated significantly higher psychological factors for stress perception, depressive symptoms and psychiatric counselling compared with the normal sleep duration group. On adjustment of various confounders, the long sleep duration group demonstrated significantly higher ORs for stroke compared with the normal sleep duration group (OR 1.96, 95% CI 1.06 to 3.61). Also, when stratified by sex, men did not exhibit differences in stroke prevalence by sleep duration, but women showed higher stroke prevalence in the long sleep duration group compared with normal sleep duration (OR 2.94, 95% CI 1.21 to 7.17). Conclusions Longer sleep duration was associated with higher stroke prevalence, and this trend was more pronounced in women.
    Keywords: Open access, Epidemiology
    Electronic ISSN: 2044-6055
    Topics: Medicine
    Published by BMJ Publishing
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-03
    Description: Personalized dosimetry with high accuracy is becoming more important because of the growing interest in personalized medicine and targeted radionuclide therapy. Voxel-based dosimetry using dose point kernel or voxel S-value (VSV) convolution is available. However, these approaches do not consider the heterogeneity of the medium. Here, we propose a new method for whole-body voxel-based personalized dosimetry in heterogeneous media with nonuniform activity distributions—a method we refer to as the multiple VSV approach. Instead of using only a single VSV, as found in water, the method uses multiple numbers ( N ) of VSVs to cover media of various density ranges, as found in the whole body. Methods: The VSVs were precalculated using GATE Monte Carlo simulation and were convoluted with the time-integrated activity to generate density-specific dose maps. CT-based segmentation was performed to generate a binary mask image for each density region. The final dose map was acquired by the summation of N segmented density-specific dose maps. We tested several sets of VSVs with different densities: N = 1 (single water VSV), 4, 6, 8, 10, and 20. To validate the proposed method, phantom and patient studies were conducted and compared with the direct Monte Carlo approach, which was considered the ground truth. Finally, dosimetry on 10 patients was performed using the multiple VSV approach and compared with the single VSV and organ-based approaches. Errors at the voxel and organ levels were reported for 8 organs. Results: In the phantom and patient studies, the multiple VSV approach showed significant decreases in voxel-level errors, especially for the lung and bone regions. As the number of VSVs increased, voxel-level errors decreased, although some overestimations were observed at the lung boundaries. For the multiple VSVs ( N = 8), we achieved a voxel-level error of 2.06%. In the dosimetry study, our proposed method showed greatly improved results compared with single VSV and organ-based dosimetry. Errors at the organ level were –6.71%, 2.17%, and 227.46% for single VSV, multiple VSV, and organ-based dosimetry, respectively. Conclusion: The multiple VSV approach for heterogeneous media with nonuniform activity distributions offers fast personalized dosimetry at the whole-body level, yielding results comparable to those of the direct Monte Carlo approach.
    Print ISSN: 0022-3123
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-18
    Description: During development, cells interpret complex and often conflicting signals to make optimal decisions. Plant stomata, the cellular interface between a plant and the atmosphere, develop according to positional cues, which include a family of secreted peptides called epidermal patterning factors (EPFs). How these signalling peptides orchestrate pattern formation at a molecular level remains unclear. Here we report in Arabidopsis that Stomagen (also called EPF-LIKE9) peptide, which promotes stomatal development, requires ERECTA (ER)-family receptor kinases and interferes with the inhibition of stomatal development by the EPIDERMAL PATTERNING FACTOR 2 (EPF2)-ER module. Both EPF2 and Stomagen directly bind to ER and its co-receptor TOO MANY MOUTHS. Stomagen peptide competitively replaced EPF2 binding to ER. Furthermore, application of EPF2, but not Stomagen, elicited rapid phosphorylation of downstream signalling components in vivo. Our findings demonstrate how a plant receptor agonist and antagonist define inhibitory and inductive cues to fine-tune tissue patterning on the plant epidermis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4532310/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4532310/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jin Suk -- Hnilova, Marketa -- Maes, Michal -- Lin, Ya-Chen Lisa -- Putarjunan, Aarthi -- Han, Soon-Ki -- Avila, Julian -- Torii, Keiko U -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jun 25;522(7557):439-43. doi: 10.1038/nature14561. Epub 2015 Jun 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA [2] Department of Biology, University of Washington, Seattle, Washington 98195, USA. ; Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA. ; Department of Biology, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26083750" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/growth & development/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; *Binding, Competitive ; DNA-Binding Proteins/*metabolism ; Enzyme Activation ; Hypocotyl/metabolism ; MAP Kinase Signaling System ; Mitogen-Activated Protein Kinases/metabolism ; Phosphorylation ; Plant Stomata/*growth & development/*metabolism ; Protein-Serine-Threonine Kinases/deficiency/genetics/*metabolism ; Receptors, Cell Surface/deficiency/genetics/*metabolism ; Seedlings/enzymology/metabolism ; Transcription Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-10-02
    Description: Simultaneous reconstruction of activity and attenuation using the maximum-likelihood reconstruction of activity and attenuation (MLAA) augmented by time-of-flight information is a promising method for PET attenuation correction. However, it still suffers from several problems, including crosstalk artifacts, slow convergence speed, and noisy attenuation maps (μ-maps). In this work, we developed deep convolutional neural networks (CNNs) to overcome these MLAA limitations, and we verified their feasibility using a clinical brain PET dataset. Methods: We applied the proposed method to one of the most challenging PET cases for simultaneous image reconstruction ( 18 F-fluorinated- N -3-fluoropropyl-2-β-carboxymethoxy-3-β-(4-iodophenyl)nortropane [ 18 F-FP-CIT] PET scans with highly specific binding to striatum of the brain). Three different CNN architectures (convolutional autoencoder [CAE], Unet, and Hybrid of CAE) were designed and trained to learn a CT-derived μ-map (μ-CT) from the MLAA-generated activity distribution and μ-map (μ-MLAA). The PET/CT data of 40 patients with suspected Parkinson disease were used for 5-fold cross-validation. For the training of CNNs, 800,000 transverse PET and CT slices augmented from 32 patient datasets were used. The similarity to μ-CT of the CNN-generated μ-maps (μ-CAE, μ-Unet, and μ-Hybrid) and μ-MLAA was compared using Dice similarity coefficients. In addition, we compared the activity concentration of specific (striatum) and nonspecific (cerebellum and occipital cortex) binding regions and the binding ratios in the striatum in the PET activity images reconstructed using those μ-maps. Results: The CNNs generated less noisy and more uniform μ-maps than the original μ-MLAA. Moreover, the air cavities and bones were better resolved in the proposed CNN outputs. In addition, the proposed deep learning approach was useful for mitigating the crosstalk problem in the MLAA reconstruction. The Hybrid network of CAE and Unet yielded the most similar μ-maps to μ-CT (Dice similarity coefficient in the whole head = 0.79 in the bone and 0.72 in air cavities), resulting in only about a 5% error in activity and binding ratio quantification. Conclusion: The proposed deep learning approach is promising for accurate attenuation correction of activity distribution in time-of-flight PET systems.
    Print ISSN: 0022-3123
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-11-16
    Description: Purpose: IL15 induces the activation and proliferation of natural killer (NK) and memory CD8 + T cells and has preclinical antitumor activity. Given the superior activity and favorable kinetics of ALT-803 (IL15N72D:IL15RαSu/IgG1 Fc complex) over recombinant human IL15 (rhIL15) in animal models, we performed this first-in-human phase I trial of ALT-803 in patients with advanced solid tumors. Patients and Methods: Patients with incurable advanced melanoma, renal cell, non–small cell lung, and head and neck cancer were treated with ALT-803 0.3 to 6 μg/kg weekly intravenously or 6 to 20 μg/kg weekly subcutaneously for 4 consecutive weeks, every 6 weeks. Immune correlates included pharmacokinetics, immunogenicity, and lymphocyte expansion and function. Clinical endpoints were toxicity and antitumor activity. Results: Twenty-four patients were enrolled; 11 received intravenous and 13 received subcutaneous ALT-803. Of these patients, nine had melanoma, six renal, three head and neck, and six lung cancer. Although total lymphocyte and CD8 + T-cell expansion were modest, NK cell numbers rose significantly. Neither anti–ALT-803 antibodies nor clinical activity were observed. Overall, ALT-803 was well tolerated, with adverse effects including fatigue and nausea most commonly with intravenous administration, whereas painful injection site wheal was reported most commonly with subcutaneous ALT-803. Conclusions: Subcutaneous ALT-803 produced the expected NK cell expansion and was well tolerated with minimal cytokine toxicities and a strong local inflammatory reaction at injection sites in patients with advanced cancer. These data, together with compelling evidence of synergy in preclinical and clinical studies, provide the rationale for combining ALT-803 with other anticancer agents. Clin Cancer Res; 24(22); 5552–61. ©2018 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-11-02
    Description: Hepatocellular carcinoma (HCC) is a heterogeneous disease. Mouse models are commonly used as preclinical models to study hepatocarcinogenesis, but how well these models recapitulate molecular subtypes of human HCC is unclear. Here, integration of genomic signatures from molecularly and clinically defined human HCC ( n = 11) and mouse models of HCC ( n = 9) identified the mouse models that best resembled subtypes of human HCC and determined the clinical relevance of each model. Mst1/2 knockout (KO), Sav1 KO, and SV40 T antigen mouse models effectively recapitulated subtypes of human HCC with a poor prognosis, whereas the Myc transgenic model best resembled human HCCs with a more favorable prognosis. The Myc model was also associated with activation of β-catenin. E2f1, E2f1/Myc, E2f1/Tgfa , and diethylnitrosamine (DEN)-induced models were heterogeneous and were unequally split into poor and favorable prognoses. Mst1/2 KO and Sav1 KO models best resemble human HCC with hepatic stem cell characteristics. Applying a genomic predictor for immunotherapy, the six-gene IFN score, the Mst1/2 KO, Sav1 KO, SV40, and DEN models were predicted to be the least responsive to immunotherapy. Further analysis showed that elevated expression of immune-inhibitory genes ( Cd276 and Nectin2/ Pvrl2 ) in Mst1/2 KO, Sav1 KO, and SV40 models and decreased expression of immune stimulatory gene ( Cd86 ) in the DEN model might be accountable for the lack of predictive response to immunotherapy. Implication: The current genomic approach identified the most relevant mouse models to human liver cancer and suggests immunotherapeutic potential for the treatment of specific subtypes. Mol Cancer Res; 16(11); 1713–23. ©2018 AACR .
    Print ISSN: 1541-7786
    Electronic ISSN: 1557-3125
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-12-01
    Description: Background/Aim: This study aimed to determine the effect of different BRCA1 exonal mutations on the clinical course of epithelial ovarian cancer (EOC). Patients and Methods: Clinicopathological variables and survival outcomes were compared among 53 primary EOC patients with pathogenic BRCA1 mutations in exons 1-11 (5’ mutations) and in exons 12-24 (3’ mutations). Results: BRCA1 5’ exonal mutations were found in 35 (66.0%) patients. The median follow-up period was 40 months. Clinicopathological variables remained unchanged between the two groups. Patients with 5’ mutations had a significantly longer progression-free survival than those with C-terminal mutations (p=0.034), better predicting progression-free survival [2.923 (1.402-6.093), p=0.004], but not overall survival in cases of multiple relapses (p=0.497). Conclusion: N-terminal BRCA1 mutations in EOC patients are associated with favourable primary progression-free survival, a trend observed only in primary progression-free survival, not in overall survival.
    Print ISSN: 0250-7005
    Electronic ISSN: 1791-7530
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-06-16
    Description: Autism spectrum disorder (ASD) is a group of conditions characterized by impaired social interaction and communication, and restricted and repetitive behaviours. ASD is a highly heritable disorder involving various genetic determinants. Shank2 (also known as ProSAP1) is a multi-domain scaffolding protein and signalling adaptor enriched at excitatory neuronal synapses, and mutations in the human SHANK2 gene have recently been associated with ASD and intellectual disability. Although ASD-associated genes are being increasingly identified and studied using various approaches, including mouse genetics, further efforts are required to delineate important causal mechanisms with the potential for therapeutic application. Here we show that Shank2-mutant (Shank2(-/-)) mice carrying a mutation identical to the ASD-associated microdeletion in the human SHANK2 gene exhibit ASD-like behaviours including reduced social interaction, reduced social communication by ultrasonic vocalizations, and repetitive jumping. These mice show a marked decrease in NMDA (N-methyl-D-aspartate) glutamate receptor (NMDAR) function. Direct stimulation of NMDARs with D-cycloserine, a partial agonist of NMDARs, normalizes NMDAR function and improves social interaction in Shank2(-/-) mice. Furthermore, treatment of Shank2(-/-) mice with a positive allosteric modulator of metabotropic glutamate receptor 5 (mGluR5), which enhances NMDAR function via mGluR5 activation, also normalizes NMDAR function and markedly enhances social interaction. These results suggest that reduced NMDAR function may contribute to the development of ASD-like phenotypes in Shank2(-/-) mice, and mGluR modulation of NMDARs offers a potential strategy to treat ASD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Won, Hyejung -- Lee, Hye-Ryeon -- Gee, Heon Yung -- Mah, Won -- Kim, Jae-Ick -- Lee, Jiseok -- Ha, Seungmin -- Chung, Changuk -- Jung, Eun Suk -- Cho, Yi Sul -- Park, Sae-Geun -- Lee, Jung-Soo -- Lee, Kyungmin -- Kim, Daesoo -- Bae, Yong Chul -- Kaang, Bong-Kiun -- Lee, Min Goo -- Kim, Eunjoon -- England -- Nature. 2012 Jun 13;486(7402):261-5. doi: 10.1038/nature11208.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, KAIST, Daejeon 305-701, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22699620" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*genetics ; Animals ; Antimetabolites/pharmacology ; *Autistic Disorder/genetics/metabolism ; Behavior, Animal/*drug effects/physiology ; Benzamides/*pharmacology ; Cycloserine/*pharmacology ; Disease Models, Animal ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Nerve Tissue Proteins/*genetics ; Pyrazoles/*pharmacology ; Receptors, N-Methyl-D-Aspartate/*agonists/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-07-25
    Description: Magnetic devices are a leading contender for the implementation of memory and logic technologies that are non-volatile, that can scale to high density and high speed, and that do not wear out. However, widespread application of magnetic memory and logic devices will require the development of efficient mechanisms for reorienting their magnetization using the least possible current and power. There has been considerable recent progress in this effort; in particular, it has been discovered that spin-orbit interactions in heavy-metal/ferromagnet bilayers can produce strong current-driven torques on the magnetic layer, via the spin Hall effect in the heavy metal or the Rashba-Edelstein effect in the ferromagnet. In the search for materials to provide even more efficient spin-orbit-induced torques, some proposals have suggested topological insulators, which possess a surface state in which the effects of spin-orbit coupling are maximal in the sense that an electron's spin orientation is fixed relative to its propagation direction. Here we report experiments showing that charge current flowing in-plane in a thin film of the topological insulator bismuth selenide (Bi2Se3) at room temperature can indeed exert a strong spin-transfer torque on an adjacent ferromagnetic permalloy (Ni81Fe19) thin film, with a direction consistent with that expected from the topological surface state. We find that the strength of the torque per unit charge current density in Bi2Se3 is greater than for any source of spin-transfer torque measured so far, even for non-ideal topological insulator films in which the surface states coexist with bulk conduction. Our data suggest that topological insulators could enable very efficient electrical manipulation of magnetic materials at room temperature, for memory and logic applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mellnik, A R -- Lee, J S -- Richardella, A -- Grab, J L -- Mintun, P J -- Fischer, M H -- Vaezi, A -- Manchon, A -- Kim, E-A -- Samarth, N -- Ralph, D C -- England -- Nature. 2014 Jul 24;511(7510):449-51. doi: 10.1038/nature13534.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cornell University, Ithaca, New York 14853, USA. ; Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA. ; 1] Cornell University, Ithaca, New York 14853, USA [2] Weizmann Institute of Science, Rehovot 76100, Israel. ; King Abdullah University of Science and Technology, Physical Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia. ; 1] Cornell University, Ithaca, New York 14853, USA [2] Kavli Institute at Cornell, Ithaca, New York 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25056062" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...