Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-06-02
    Description: The circadian clock in mammals is driven by an autoregulatory transcriptional feedback mechanism that takes approximately 24 hours to complete. A key component of this mechanism is a heterodimeric transcriptional activator consisting of two basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) domain protein subunits, CLOCK and BMAL1. Here, we report the crystal structure of a complex containing the mouse CLOCK:BMAL1 bHLH-PAS domains at 2.3 A resolution. The structure reveals an unusual asymmetric heterodimer with the three domains in each of the two subunits--bHLH, PAS-A, and PAS-B--tightly intertwined and involved in dimerization interactions, resulting in three distinct protein interfaces. Mutations that perturb the observed heterodimer interfaces affect the stability and activity of the CLOCK:BMAL1 complex as well as the periodicity of the circadian oscillator. The structure of the CLOCK:BMAL1 complex is a starting point for understanding at an atomic level the mechanism driving the mammalian circadian clock.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694778/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694778/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Nian -- Chelliah, Yogarany -- Shan, Yongli -- Taylor, Clinton A -- Yoo, Seung-Hee -- Partch, Carrie -- Green, Carla B -- Zhang, Hong -- Takahashi, Joseph S -- R01 GM081875/GM/NIGMS NIH HHS/ -- R01 GM090247/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jul 13;337(6091):189-94. doi: 10.1126/science.1222804. Epub 2012 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22653727" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors/*chemistry/genetics/metabolism ; Amino Acid Sequence ; Animals ; CLOCK Proteins/*chemistry/genetics/metabolism ; Cells, Cultured ; *Circadian Rhythm ; Crystallography, X-Ray ; DNA/metabolism ; HEK293 Cells ; Helix-Loop-Helix Motifs ; Humans ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Static Electricity ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-09-01
    Description: The mammalian circadian clock involves a transcriptional feed back loop in which CLOCK and BMAL1 activate the Period and Cryptochrome genes, which then feedback and repress their own transcription. We have interrogated the transcriptional architecture of the circadian transcriptional regulatory loop on a genome scale in mouse liver and find a stereotyped, time-dependent pattern of transcription factor binding, RNA polymerase II (RNAPII) recruitment, RNA expression, and chromatin states. We find that the circadian transcriptional cycle of the clock consists of three distinct phases: a poised state, a coordinated de novo transcriptional activation state, and a repressed state. Only 22% of messenger RNA (mRNA) cycling genes are driven by de novo transcription, suggesting that both transcriptional and posttranscriptional mechanisms underlie the mammalian circadian clock. We also find that circadian modulation of RNAPII recruitment and chromatin remodeling occurs on a genome-wide scale far greater than that seen previously by gene expression profiling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694775/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694775/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koike, Nobuya -- Yoo, Seung-Hee -- Huang, Hung-Chung -- Kumar, Vivek -- Lee, Choogon -- Kim, Tae-Kyung -- Takahashi, Joseph S -- F32 DA024556/DA/NIDA NIH HHS/ -- R01 NS053616/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Oct 19;338(6105):349-54. doi: 10.1126/science.1226339. Epub 2012 Aug 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22936566" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors/metabolism ; Animals ; CLOCK Proteins/metabolism ; Chromatin/*metabolism ; Chromatin Assembly and Disassembly/genetics ; Circadian Clocks/*genetics ; Cryptochromes/*genetics ; DNA, Intergenic ; Enhancer Elements, Genetic ; *Epigenesis, Genetic ; Gene Expression Profiling ; Genetic Loci ; Histones/metabolism ; Liver/metabolism/*physiology ; Male ; Mice ; Mice, Inbred C57BL ; Period Circadian Proteins/genetics ; RNA Polymerase II/metabolism ; RNA, Messenger/genetics ; *Transcription, Genetic ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2011-01-29
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760156/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760156/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bass, Joseph -- Takahashi, Joseph S -- R01 DK090625/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Jan 27;469(7331):476-8. doi: 10.1038/469476a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21270881" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Circadian Rhythm/genetics/*physiology ; Cyanobacteria/metabolism ; Erythrocytes/metabolism ; Humans ; *Oxidation-Reduction ; Peroxiredoxins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-03-31
    Description: Synchronizing rhythms of behaviour and metabolic processes is important for cardiovascular health and preventing metabolic diseases. The nuclear receptors REV-ERB-alpha and REV-ERB-beta have an integral role in regulating the expression of core clock proteins driving rhythms in activity and metabolism. Here we describe the identification of potent synthetic REV-ERB agonists with in vivo activity. Administration of synthetic REV-ERB ligands alters circadian behaviour and the circadian pattern of core clock gene expression in the hypothalami of mice. The circadian pattern of expression of an array of metabolic genes in the liver, skeletal muscle and adipose tissue was also altered, resulting in increased energy expenditure. Treatment of diet-induced obese mice with a REV-ERB agonist decreased obesity by reducing fat mass and markedly improving dyslipidaemia and hyperglycaemia. These results indicate that synthetic REV-ERB ligands that pharmacologically target the circadian rhythm may be beneficial in the treatment of sleep disorders as well as metabolic diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3343186/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3343186/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Solt, Laura A -- Wang, Yongjun -- Banerjee, Subhashis -- Hughes, Travis -- Kojetin, Douglas J -- Lundasen, Thomas -- Shin, Youseung -- Liu, Jin -- Cameron, Michael D -- Noel, Romain -- Yoo, Seung-Hee -- Takahashi, Joseph S -- Butler, Andrew A -- Kamenecka, Theodore M -- Burris, Thomas P -- DK080201/DK/NIDDK NIH HHS/ -- DK088499/DK/NIDDK NIH HHS/ -- DK089984/DK/NIDDK NIH HHS/ -- MH092769/MH/NIMH NIH HHS/ -- R01 DK073189/DK/NIDDK NIH HHS/ -- R01 DK080201/DK/NIDDK NIH HHS/ -- R01 DK080201-05/DK/NIDDK NIH HHS/ -- R01 MH092769/MH/NIMH NIH HHS/ -- R01 MH092769-02/MH/NIMH NIH HHS/ -- R01 MH093429/MH/NIMH NIH HHS/ -- R01 MH093429-01A1/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Mar 29;485(7396):62-8. doi: 10.1038/nature11030.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22460951" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/drug effects/metabolism ; Animals ; Biological Clocks/drug effects/genetics/physiology ; Circadian Rhythm/*drug effects/genetics/*physiology ; Disease Models, Animal ; Energy Metabolism/*drug effects ; HEK293 Cells ; Humans ; Hypothalamus/drug effects/metabolism ; Liver/drug effects/metabolism ; Metabolome/drug effects ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Muscle, Skeletal/drug effects/metabolism ; Nuclear Receptor Subfamily 1, Group D, Member 1/*antagonists & ; inhibitors/metabolism ; Obesity/chemically induced/drug therapy/metabolism ; Pyrrolidines/*pharmacology ; Receptors, Cytoplasmic and Nuclear/*antagonists & inhibitors/metabolism ; Repressor Proteins/*antagonists & inhibitors/metabolism ; Thiophenes/*pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-11-10
    Description: Circadian clocks regulate numerous physiological processes that vary across the day-night (diurnal) cycle, but if and how the circadian clock regulates the adaptive immune system is mostly unclear. Interleukin-17-producing CD4(+) T helper (T(H)17) cells are proinflammatory immune cells that protect against bacterial and fungal infections at mucosal surfaces. Their lineage specification is regulated by the orphan nuclear receptor RORgammat. We show that the transcription factor NFIL3 suppresses T(H)17 cell development by directly binding and repressing the Rorgammat promoter. NFIL3 links T(H)17 cell development to the circadian clock network through the transcription factor REV-ERBalpha. Accordingly, TH17 lineage specification varies diurnally and is altered in Rev-erbalpha(-/-) mice. Light-cycle disruption elevated intestinal T(H)17 cell frequencies and increased susceptibility to inflammatory disease. Thus, lineage specification of a key immune cell is under direct circadian control.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165400/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165400/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Xiaofei -- Rollins, Darcy -- Ruhn, Kelly A -- Stubblefield, Jeremy J -- Green, Carla B -- Kashiwada, Masaki -- Rothman, Paul B -- Takahashi, Joseph S -- Hooper, Lora V -- R01 DK070855/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Nov 8;342(6159):727-30. doi: 10.1126/science.1243884.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24202171" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic-Leucine Zipper Transcription Factors/genetics/*metabolism ; CLOCK Proteins/genetics ; Cell Differentiation/*genetics ; Cell Lineage/genetics ; Circadian Clocks/genetics/*immunology ; *Gene Expression Regulation ; Germ-Free Life ; HEK293 Cells ; Humans ; Intestine, Small/immunology/microbiology ; Jurkat Cells ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Nuclear Receptor Subfamily 1, Group D, Member 1/genetics/metabolism ; Nuclear Receptor Subfamily 1, Group F, Member 3/*genetics ; Promoter Regions, Genetic ; Th17 Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-12-21
    Description: The inbred mouse C57BL/6J is the reference strain for genome sequence and for most behavioral and physiological phenotypes. However, the International Knockout Mouse Consortium uses an embryonic stem cell line derived from a related C57BL/6N substrain. We found that C57BL/6N has a lower acute and sensitized response to cocaine and methamphetamine. We mapped a single causative locus and identified a nonsynonymous mutation of serine to phenylalanine (S968F) in Cytoplasmic FMRP interacting protein 2 (Cyfip2) as the causative variant. The S968F mutation destabilizes CYFIP2, and deletion of the C57BL/6N mutant allele leads to acute and sensitized cocaine-response phenotypes. We propose that CYFIP2 is a key regulator of cocaine response in mammals and present a framework to use mouse substrains to identify previously unknown genes and alleles regulating behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500108/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500108/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kumar, Vivek -- Kim, Kyungin -- Joseph, Chryshanthi -- Kourrich, Said -- Yoo, Seung-Hee -- Huang, Hung Chung -- Vitaterna, Martha H -- de Villena, Fernando Pardo-Manuel -- Churchill, Gary -- Bonci, Antonello -- Takahashi, Joseph S -- F32 DA024556/DA/NIDA NIH HHS/ -- F32DA024556/DA/NIDA NIH HHS/ -- U01 MH061915/MH/NIMH NIH HHS/ -- U01MH61915/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Dec 20;342(6165):1508-12. doi: 10.1126/science.1245503.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357318" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Central Nervous System Stimulants/administration & dosage ; Cocaine/*administration & dosage ; Cocaine-Related Disorders/*genetics/*psychology ; *Drug-Seeking Behavior ; Methamphetamine/administration & dosage ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Motor Activity/drug effects ; Mutation ; Nerve Tissue Proteins/genetics/*physiology ; Phenylalanine/genetics ; Polymorphism, Single Nucleotide ; Psychomotor Performance/drug effects ; Quantitative Trait Loci ; Serine/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 18 (1995), S. 531-553 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 40 (1978), S. 501-526 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 55 (1993), S. 729-753 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-12-11
    Description: We illustrate, through two case studies, that "mean-variance QTL mapping"—QTL mapping that models effects on the mean and the variance simultaneously—can discover QTL that traditional interval mapping cannot. Mean-variance QTL mapping is based on the double generalized linear model, which extends the standard linear model used in interval mapping by incorporating not only a set of genetic and covariate effects for mean but also set of such effects for the residual variance. Its potential for use in QTL mapping has been described previously, but it remains underutilized, with certain key advantages undemonstrated until now. In the first case study, a reduced complexity intercross of C57BL/6J and C57BL/6N mice examining circadian behavior, our reanalysis detected a mean-controlling QTL for circadian wheel running activity that interval mapping did not; mean-variance QTL mapping was more powerful than interval mapping at the QTL because it accounted for the fact that mice homozygous for the C57BL/6N allele had less residual variance than other mice. In the second case study, an intercross between C57BL/6J and C58/J mice examining anxiety-like behaviors, our reanalysis detected a variance-controlling QTL for rearing behavior; interval mapping did not identify this QTL because it does not target variance QTL. We believe that the results of these reanalyses, which in other respects largely replicated the original findings, support the use of mean-variance QTL mapping as standard practice.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...