Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-10-09
    Description: The human immunodeficiency virus type 1 (HIV-1) envelope (Env) spike, comprising three gp120 and three gp41 subunits, is a conformational machine that facilitates HIV-1 entry by rearranging from a mature unliganded state, through receptor-bound intermediates, to a post-fusion state. As the sole viral antigen on the HIV-1 virion surface, Env is both the target of neutralizing antibodies and a focus of vaccine efforts. Here we report the structure at 3.5 A resolution for an HIV-1 Env trimer captured in a mature closed state by antibodies PGT122 and 35O22. This structure reveals the pre-fusion conformation of gp41, indicates rearrangements needed for fusion activation, and defines parameters of immune evasion and immune recognition. Pre-fusion gp41 encircles amino- and carboxy-terminal strands of gp120 with four helices that form a membrane-proximal collar, fastened by insertion of a fusion peptide-proximal methionine into a gp41-tryptophan clasp. Spike rearrangements required for entry involve opening the clasp and expelling the termini. N-linked glycosylation and sequence-variable regions cover the pre-fusion closed spike; we used chronic cohorts to map the prevalence and location of effective HIV-1-neutralizing responses, which were distinguished by their recognition of N-linked glycan and tolerance for epitope-sequence variation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348022/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348022/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pancera, Marie -- Zhou, Tongqing -- Druz, Aliaksandr -- Georgiev, Ivelin S -- Soto, Cinque -- Gorman, Jason -- Huang, Jinghe -- Acharya, Priyamvada -- Chuang, Gwo-Yu -- Ofek, Gilad -- Stewart-Jones, Guillaume B E -- Stuckey, Jonathan -- Bailer, Robert T -- Joyce, M Gordon -- Louder, Mark K -- Tumba, Nancy -- Yang, Yongping -- Zhang, Baoshan -- Cohen, Myron S -- Haynes, Barton F -- Mascola, John R -- Morris, Lynn -- Munro, James B -- Blanchard, Scott C -- Mothes, Walther -- Connors, Mark -- Kwong, Peter D -- AI0678501/AI/NIAID NIH HHS/ -- AI100645/AI/NIAID NIH HHS/ -- P01 GM056550/GM/NIGMS NIH HHS/ -- P01-GM56550/GM/NIGMS NIH HHS/ -- P30 AI050410/AI/NIAID NIH HHS/ -- R01 GM098859/GM/NIGMS NIH HHS/ -- R01-GM098859/GM/NIGMS NIH HHS/ -- R21 AI100696/AI/NIAID NIH HHS/ -- R21-AI100696/AI/NIAID NIH HHS/ -- UL1 TR000142/TR/NCATS NIH HHS/ -- UM1 AI100645/AI/NIAID NIH HHS/ -- ZIA AI005023-13/Intramural NIH HHS/ -- ZIA AI005024-13/Intramural NIH HHS/ -- England -- Nature. 2014 Oct 23;514(7523):455-61. doi: 10.1038/nature13808. Epub 2014 Oct 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Sandringham, Johannesburg 2131, South Africa. ; Departments of Medicine, Epidemiology, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. ; Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, and the Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham, North Carolina 27710, USA. ; 1] Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Sandringham, Johannesburg 2131, South Africa [2] University of the Witwatersrand, Braamfontein, Johannesburg 2000, South Africa [3] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban 4041, South Africa. ; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536, USA. ; Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25296255" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/chemistry/immunology ; Amino Acid Sequence ; Antibodies, Neutralizing/immunology ; Cohort Studies ; Crystallography, X-Ray ; Genetic Variation ; Glycosylation ; HIV Antibodies/immunology ; HIV Envelope Protein gp120/*chemistry/genetics/*immunology ; HIV Envelope Protein gp41/*chemistry/genetics/*immunology ; HIV Infections/immunology ; Humans ; Immune Evasion ; Membrane Fusion ; Models, Molecular ; Molecular Sequence Data ; Polysaccharides/chemistry/immunology ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Subunits/chemistry/genetics/immunology ; Structural Homology, Protein ; Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Bis(diisopropyl)thiophosphoryl disulfide (DIPDIS) is used as a sulfur donor vulcanizing system for cis-1,4-polyisoprene. It is shown that the network structure consists of poly- and disulfidic crosslinks at early stages of cure, simplifying at optimum cure to monosulfidic crosslinks. It is thought that pendent accelerator groups are bound to the rubber molecule at early stages of cure, but are subsequently replaced by cyclic sulfidic groups. The good thermal and thermal oxidative aging behaviour of the vulcanizate is due to the formation of zinc diisopropyldithiophosphate (ZDP) in situ.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 14 (1970), S. 2327-2331 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A comparison of the crosslink densities calculated from compression modulus and stress-strain measurements is made for a series of natural rubber vulcanizates. Errors resulting from the use of accepted approximations and the effect of sample dimensions are also investigated.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 23 (1979), S. 3621-3629 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A synergistic combination of bis(diisopropyl)thiophosphoryl disulfide, dimorpholyl disulfide, and sulfur is used to produce an efficient vulcanizing system for a range of rubbers. This produces vulcanizates with the exceptional thermal and thermal-oxidative stability characteristic of sulfur donor vulcanizates and the rapid and extensive crosslinking reaction normally associated with a conventional sulfur-accelerator combination. A pronounced induction period is noted. The crosslinks initially produced in cis-1,4-polyisoprene rubbers are predominantly polysulfide but reduce to mono- and disulfides at optimum and extended cures. The crosslinks of the ethylene-propylene terpolymer and the styrene-butadiene vulcanizates are initially mainly disulfide but are rapidly reduced to monosulfides at the high curing temperatures (180°C) used. A comparison with vulcanization systems based on tetramethylthiuram disulfide and bis(diisopropyl)thiophosphoryl tri-and tetrasulfides as sulfur donors and with a conventional cyclohexylbenthazyl-2-sulfenamide-sulfur combination, respectively, shows it to have distinct advantages.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Inorganic chemistry 11 (1972), S. 1846-1848 
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...