Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-12-12
    Description: The earliest history of the Moon is poorly preserved in the surface geologic record due to the high flux of impactors, but aspects of that history may be preserved in subsurface structures. Application of gravity gradiometry to observations by the Gravity Recovery and Interior Laboratory (GRAIL) mission results in the identification of a population of linear gravity anomalies with lengths of hundreds of kilometers. Inversion of the gravity anomalies indicates elongated positive-density anomalies that are interpreted to be ancient vertical tabular intrusions or dikes formed by magmatism in combination with extension of the lithosphere. Crosscutting relationships support a pre-Nectarian to Nectarian age, preceding the end of the heavy bombardment of the Moon. The distribution, orientation, and dimensions of the intrusions indicate a globally isotropic extensional stress state arising from an increase in the Moon's radius by 0.6 to 4.9 kilometers early in lunar history, consistent with predictions of thermal models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andrews-Hanna, Jeffrey C -- Asmar, Sami W -- Head, James W 3rd -- Kiefer, Walter S -- Konopliv, Alexander S -- Lemoine, Frank G -- Matsuyama, Isamu -- Mazarico, Erwan -- McGovern, Patrick J -- Melosh, H Jay -- Neumann, Gregory A -- Nimmo, Francis -- Phillips, Roger J -- Smith, David E -- Solomon, Sean C -- Taylor, G Jeffrey -- Wieczorek, Mark A -- Williams, James G -- Zuber, Maria T -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):675-8. doi: 10.1126/science.1231753. Epub 2012 Dec 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geophysics and Center for Space Resources, Colorado School of Mines, Golden, CO 80401, USA. jcahanna@mines.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23223393" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-10-04
    Description: The Procellarum region is a broad area on the nearside of the Moon that is characterized by low elevations, thin crust, and high surface concentrations of the heat-producing elements uranium, thorium, and potassium. The region has been interpreted as an ancient impact basin approximately 3,200 kilometres in diameter, although supporting evidence at the surface would have been largely obscured as a result of the great antiquity and poor preservation of any diagnostic features. Here we use data from the Gravity Recovery and Interior Laboratory (GRAIL) mission to examine the subsurface structure of Procellarum. The Bouguer gravity anomalies and gravity gradients reveal a pattern of narrow linear anomalies that border Procellarum and are interpreted to be the frozen remnants of lava-filled rifts and the underlying feeder dykes that served as the magma plumbing system for much of the nearside mare volcanism. The discontinuous surface structures that were earlier interpreted as remnants of an impact basin rim are shown in GRAIL data to be a part of this continuous set of border structures in a quasi-rectangular pattern with angular intersections, contrary to the expected circular or elliptical shape of an impact basin. The spatial pattern of magmatic-tectonic structures bounding Procellarum is consistent with their formation in response to thermal stresses produced by the differential cooling of the province relative to its surroundings, coupled with magmatic activity driven by the greater-than-average heat flux in the region.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andrews-Hanna, Jeffrey C -- Besserer, Jonathan -- Head, James W 3rd -- Howett, Carly J A -- Kiefer, Walter S -- Lucey, Paul J -- McGovern, Patrick J -- Melosh, H Jay -- Neumann, Gregory A -- Phillips, Roger J -- Schenk, Paul M -- Smith, David E -- Solomon, Sean C -- Zuber, Maria T -- England -- Nature. 2014 Oct 2;514(7520):68-71. doi: 10.1038/nature13697.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geophysics and Center for Space Resources, Colorado School of Mines, Golden, Colorado 80401, USA. ; Department of Earth and Planetary Sciences, University of California, Santa Cruz, California 95064, USA. ; Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island 02912, USA. ; Planetary Science Directorate, Southwest Research Institute, Boulder, Colorado 80302, USA. ; Lunar and Planetary Institute, Houston, Texas 77058, USA. ; Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, Hawaii 96822, USA. ; Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, USA. ; Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA. ; Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA. ; 1] Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington DC 20015, USA [2] Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25279919" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-09
    Description: Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, Catherine L -- Phillips, Roger J -- Purucker, Michael E -- Anderson, Brian J -- Byrne, Paul K -- Denevi, Brett W -- Feinberg, Joshua M -- Hauck, Steven A 2nd -- Head, James W 3rd -- Korth, Haje -- James, Peter B -- Mazarico, Erwan -- Neumann, Gregory A -- Philpott, Lydia C -- Siegler, Matthew A -- Tsyganenko, Nikolai A -- Solomon, Sean C -- New York, N.Y. -- Science. 2015 May 22;348(6237):892-5. doi: 10.1126/science.aaa8720. Epub 2015 May 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada. Planetary Science Institute, Tucson, AZ 85719, USA. cjohnson@eos.ubc.ca. ; Planetary Science Directorate, Southwest Research Institute, Boulder, CO 80302, USA. ; NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA. ; The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA. ; Lunar and Planetary Institute, Houston, TX 77058, USA. Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA. ; Institute for Rock Magnetism, Department of Earth Sciences, University of Minnesota, Minneapolis, MN, 55455, USA. ; Department of Earth, Environmental, and Planetary Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA. ; Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912, USA. ; Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA. ; Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada. ; Planetary Science Institute, Tucson, AZ 85719, USA. Department of Earth Sciences, Southern Methodist University, Dallas, TX 75205, USA. ; Institute and Faculty of Physics, Saint Petersburg State University, Saint Petersburg, Russia. ; Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA. Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25953822" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...