Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] To investigate whether Tiaml is a GDS for Rho-like GTPases, Tiaml -glutathione S-transferase(GST) and Myc-tagged Rho A and Racl fusion proteins were purified from transfected COS-7 cells. Isolated Racl and RhoA proteins were preloaded with 3H-GDP and incubated with Tiaml-GST or ...
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-10-14
    Description: The semi-conservative centrosome duplication in cycling cells gives rise to a centrosome composed of a mother and a newly formed daughter centriole. Both centrioles are regarded as equivalent in their ability to form new centrioles and their symmetric duplication is crucial for cell division homeostasis. Multiciliated cells do not use the archetypal duplication program and instead form more than a hundred centrioles that are required for the growth of motile cilia and the efficient propelling of physiological fluids. The majority of these new centrioles are thought to appear de novo, that is, independently from the centrosome, around electron-dense structures called deuterosomes. Their origin remains unknown. Using live imaging combined with correlative super-resolution light and electron microscopy, we show that all new centrioles derive from the pre-existing progenitor cell centrosome through multiple rounds of procentriole seeding. Moreover, we establish that only the daughter centrosomal centriole contributes to deuterosome formation, and thus to over ninety per cent of the final centriole population. This unexpected centriolar asymmetry grants new perspectives when studying cilia-related diseases and pathological centriole amplification observed in cycling cells and associated with microcephaly and cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Al Jord, Adel -- Lemaitre, Anne-Iris -- Delgehyr, Nathalie -- Faucourt, Marion -- Spassky, Nathalie -- Meunier, Alice -- England -- Nature. 2014 Dec 4;516(7529):104-7. doi: 10.1038/nature13770. Epub 2014 Oct 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Ecole Normale Superieure, Institut de Biologie de l'ENS, IBENS, F-75005 Paris, France [2] Inserm, U1024, F-75005 Paris, France [3] CNRS, UMR 8197, F-75005 Paris, France. ; 1] Ecole Normale Superieure, Institut de Biologie de l'ENS, IBENS, F-75005 Paris, France [2] Inserm, U1024, F-75005 Paris, France [3] CNRS, UMR 8197, F-75005 Paris, France [4].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25307055" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Centrioles/*physiology/ultrastructure ; Centrosome/*physiology/ultrastructure ; Cilia/*physiology/ultrastructure ; Mice ; Microscopy, Electron, Transmission
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...