Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    ISSN: 0887-3585
    Keywords: X-ray crystallography ; flavoenzyme ; drug target ; Trypanosoma cruzi ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The three-dimensional structure of the complex between Trypanosoma cruzi trypanothione reductase (TR) (EC and the antiparasitic drug mepacrine (quinacrine) has been solved at 2.9 Å resolution. Mepacrine is a competitive inhibitor of TR but does not affect human glutathione reductase (GR), a closely related host enzyme. Of particular importance for inhibitor binding are four amino acid residues in the disulfide substrate-binding site of TR that are not conserved in human GR, namely, Glu-18 (Ala-34 in GR), Trp-21 (Arg-37), Ser-109 (Ile-113), and Met-113 (Asn-117).The acridine ring of mepacrine is fixed at the active site close to the hydrophobic wall formed by Trp-21 and Met-113. Specific pairwise interactions between functional groups of the drug and amino acid side chains include the ring nitrogen and Met-113, the chlorine atom and Trp-21, and the oxymethyl group and Ser-109. The alkylamino chain of mepacrine points into the inner region of the active site and is held in position by a solvent-mediated hydrogen bond to Glu-18.The structure of the complex shows for the first time the atomic interactions between TR and an inhibitory ligand. This is a crucial step towards the rational design of inhibitors that might be suited as drugs against Chagas' disease. © 1996 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...