Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The inherited neurometabolic disease d-2-hydroxyglutaric aciduria is complicated by progressive neurodegeneration of vulnerable brain regions during infancy and early childhood, frequently presenting with hypotonia, epilepsy and psychomotor retardation. Here, we report that the pathogenetic role of the endogenously accumulating metabolite d-2-hydroxyglutarate (D-2), which is structurally similar to the excitatory amino acid glutamate, is mediated by at least three mechanisms. (i) D-2-induced excitotoxic cell damage in primary neuronal cultures from chick and rat involved N-methyl-d-aspartate (NMDA) receptor activation. Indeed, D-2 activated recombinant NMDA receptors (NR1/NR2A, NR1/NR2B) but not recombinant alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) receptors in HEK293 cells. (ii) Fluorescence microscopy using fura-2 as a calcium indicator and the oxidant-sensitive dye dihydrorhodamine-123 revealed that D-2 disturbed intracellular calcium homeostasis and elicited the generation of reactive oxygen species. (iii) D-2 reduced complex V (ATP synthase) activity of the mitochondrial respiratory chain, reflecting an impaired energy metabolism due to inhibition of ATP synthesis but without affecting the electron-transferring complexes I–IV. Thus, D-2 stimulates neurodegeneration by mechanisms well-known for glutamate, NMDA or mitochondrial toxins. In conclusion, excitotoxicity contributes to the neuropathology of d-2-hydroxyglutaric aciduria, highlighting new neuroprotective strategies.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Homomeric glutamate receptor (GluR) channels become spontaneously active when the last alanine residue within the invariant SYTANLAAF-motif in the third membrane segment is substituted by threonine. The same mutation in the orphan GluRδ2 channel is responsible for neurodegeneration in ‘Lurcher’ (Lc) mice. Since most native GluRs are composed of different subunits, we investigated the effect of an Lc-mutated subunit in heteromeric kainate and AMPA receptors expressed in HEK293 cells. Kainate receptor KA2 subunits, either wild type or carrying the Lc mutation (KA2Lc), are retained inside the cell but are surface-expressed when assembled with GluR6 sununits. Importantly, KA2Lc dominates the gating of KA2Lc/GluR6WT channels, as revealed by spontaneous activation and by slowed desensitization and deactivation kinetics of ligand-activated whole-cell currents. Moreover, the AMPA receptor subunit GluR-BLc(Q) which forms spontaneously active homomeric channels with rectifying current-voltage relationships, dominates the gating of heteromeric GluR-BLc(Q)/GluR-A(R) channels. The spontaneous currents of these heteromeric AMPAR channels show linear current–voltage relationships, and the ligand-activated whole-cell currents display slower deactivation and desensitization kinetics than the respective wild-type channels. For heteromeric Lc-mutated kainate and AMPA receptors, the effects on kinetics were reduced relative to the homomeric Lc-mutated forms. Thus, an Lc-mutated subunit can potentially influence heteromeric channel function in vivo, and the severity of the phenotype will critically depend on the levels of homomeric GluRLc and heteromeric GluRLc/GluRWT channels.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] We have expressed glutamate-gated ion channels in Spodoptera frugiperda Sf21 insect cells using a recombinant baculovirus system. Cells infected with recombinant baculoviruses encoding the α-amino-3-hydroxy-5-methyIisoxazole-4-propionate (AMPA)-selective glutamate receptor channel subunits ...
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Changes in postsynaptic Ca2+ levels are essential for alterations in synaptic strength. At hippocampal CA3-to-CA1 synapses, the Ca2+ elevations required for LTP induction are typically mediated by NMDA receptor (NMDAR) channels but a contribution of NMDAR-independent Ca2+ sources has been implicated. Here, we tested the sensitivity of different protocols modifying synaptic strength to reduced NMDAR-mediated Ca2+ influx by employing mice genetically programmed to express in forebrain principal neurons an NR1 form that curtails Ca2+ permeability. Reduced NMDAR-mediated Ca2+ influx did not facilitate synaptic depression in CA1 neurons of these genetically modified mice. However, we observed that LTP could not be induced by pairing low frequency synaptic stimulation (LFS pairing) with postsynaptic depolarization, a protocol that induced robust LTP in wild-type mice. By contrast to LFS pairing, similar LTP levels were generated in both genotypes when postsynaptic depolarization was paired with high frequency synaptic stimulation (HFS). This indicates that the postsynaptic Ca2+ elevation also reached threshold during HFS in the mutant, probably due to summation of NMDAR-mediated Ca2+ influx. However, only in wild-type mice did repeated HFS further enhance LTP. All tested forms of LTP were blocked by the NMDAR antagonist D-AP5. Collectively, our results indicate that only NMDAR-dependent Ca2+ sources (NMDARs and Ca2+-dependent Ca2+ release from intracellular stores) mediate LFS pairing-evoked LTP. Moreover, LTP induced by the first HFS stimulus train required lower Ca2+ levels than the additional LTP obtained by repeated trains.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...