Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    ISSN: 1434-0879
    Keywords: Key words Renal tubular transport ; p-Aminohippurate ; Stimulation ; Renal cell carcinoma ; Dexamethasone ; Triiodothyronine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract This paper is the third of a long-term planned series of papers dealing with ex vivo investigations of drug transport in human kidney. The aims of this study are (a) to investigate whether or not human renal cell carcinoma (RCC) can actively accumulate p-aminohippurate (PAH) and (b) to test the response of RCC on dexamethasone or triiodothyronine (T3) using tissue slices ex vivo. By this approach, the accumulation capacity of RCC should be stimulated as a prerequisite for an increased uptake of anti-tumour drugs. Tissue slices of RCC samples of 30 patients were incubated for 24 h in Williams medium E containing 0.01–50 μM dexamethasone or T3. Thereafter, slices were placed in PAH-containing Cross–Taggart medium, and PAH uptake into kidney tissue was measured for 2h under standardised conditions as described previously. In intact human renal cortical slices, PAH uptake capacity, expressed as slice to medium ratio (Q S/M), was about 2.8 ± 0.16 after 24 h of incubation and increased significantly in dexamethasone-containing medium in a concentration-dependent manner, up to ∼150%, whereas T3 did not influence PAH accumulation. On the other hand, in RCC the PAH accumulation capacity was completely abolished (Q S/M∼1). However, after administration of dexamethasone, the accumulated amount of PAH increased significantly in RCC tissue in a concentration-dependent manner, up to ∼190%. T3 was without effect in RCC, too. Surprisingly, the dexamethasone-mediated stimulation could be differentiated into responders and non-responders, with maximal effects at different concentrations for each patient. Nevertheless, the maximal transport rates remained low in RCC, even under hormone influence. In conclusion, a moderate stimulation of tubular transport capacity can be shown ex vivo in human RCC. This phenomenon is only of a relatively low degree compared with intact renal tissue. However, in principle, the response of RCC on dexamethasone could form a basis for further therapeutic strategies to overcome multi-drug resistance in RCC patients. For this purpose, additional experiments analysing the expression of transporters of the ABC cassette-type are in progress.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0884-3996
    Keywords: hydrogen peroxide ; sodium hypochlorite ; reactive oxygen species ; chemiluminescence ; luminol ; lucigenin ; penicillin ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Evidence is provided that the amplifiers luminol and lucigenin react with different reactive oxygen species (ROS), depending on the ROS-generating system used. H2O2 is used to produce calibration curves for luminol- and lucigenin-amplified chemiluminescence. With this chemiluminescence generator we characterized the specificity and sensitivity of luminol- and lucigenin-amplified chemiluminescence and also studied penicillin G, a known enhancer of luminol-amplified chemiluminescence. The combination of luminol and lucigenin in reciprocally changing concentrations is effective in an additive manner, but the weak amplifier penicillin increases luminol-amplified chemiluminescence distinctly more than in an additive manner in different combinations. Lucigenin-amplified chemiluminescence is increased by penicillin at about 1% of the optimum concentration of penicillin; increasing concentrations of penicillin are less and less effective. On the other hand, low lucigenin concentrations enhance penicillin-amplified chemiluminescence at optimum penicillin concentrations more than in an additive manner. Fe2+ does not alter luminol-, lucigenin- or penicillin-amplified chemiluminescence. Co2+ increases luminol-amplified chemiluminescence by a factor of 100. Lucigenin- and penicillin-amplified chemiluminescence are minimally enhanced by Co2+. Cu2+ enhances luminol-amplified chemiluminescence with increasing concentrations by a factor of 1000. Lucigenin-amplified chemiluminescence increases also by the factor of 1000, but the concentration-reaction curve is not as steep. NaOCl enhances H2O2/Fe2+-driven luminol-amplified chemiluminescence in a concentration-dependent manner by a factor of 104 (in the highest concentration of 10 mmol/L) and lucigenin amplified chemiluminescence only by a factor of about 25. Catalase (CAT) abolishes luminol-, lucigenin- and penicillin-amplified chemiluminescence completely, whereas superoxide dismutase (SOD) has no effect on luminol- or penicillin-amplified chemiluminescence, but enhances lucigenin-amplified chemiluminescence five-fold increasingly with increasing SOD activity. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...