Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1420-908X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We have investigated some aspects of the regulation of production of rat platelet activating factor (PAF)in vitro. Suspensions of unseparated (PLC1), mast cell-depleted (PLC2), or mast cell (MC)-enriched rat peritoneal lavage cells (PLC) were analyzed for PAF content by extraction at alkaline pH. PAF activity extracted from PLC1 varied inversely with viable cell concentration: at 1×106 cells/ml, 32±9.3 PAF units, decreasing to 11.2±9.5 units at 10×106 cells/ml, and no activity at higher concentrations. Incubation of PLC1 in Tyrode's buffer or acetylsalicylic acid (ASA), but not salicylate, resulted in a time-dependent loss of PAf activity. Mean PAF activity of PLC2 was similar to that in PLC1, while no PAF activity was extractable from MC. Co-incubation with MC extracts inhibited PAF activity of PLC1 extracts in a dose-dependent fashion. Ultracentrifugation of PAF-containing samples led to a loss of all PAF activity in PLC1 extracts, suggesting the association of PAF activity with subcellular components. PAF appears to be derived from a non-MC population of rat PLC, is not extractable from rat PLC in the presence of ASA and is inhibited by MC extracts. These studies suggest that ASA regulates PAF availability unrelated to its effect on cylcooxygenase and that MC membrane products directly inhibit PAF activity from rat PLC.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: A device based on the cone-and-plate flow geometry commonly employed for viscometry was developed for the investigation of cell-surface interactions. The cone-and-plate geometry is capable of generating uniform, constant shear-rate flow fields, and control of cone rotational speed allows for easy variation of fluid shear rate. The current design is adapted for use with any material that is available in the form of a flat plate (film or coating). It also allows for replicate samples (the same or different surfaces) to be evaluated simultaneously. The device was tested under varying flow conditions for its ability to measure platelet adhesion from suspensions of washed platelets containing red cells. Collagen- and albumin-coated polymer materials were used as “standard” surfaces of known platelet reactivity (high and low, respectively). Adhesion to the collagen-coated surface was measured over a range of shear rate from 0 to 300 s-1 and times up to 15 min. Platelet adhesion was observed to increase with increasing shear rate and time. Adhesion was significantly higher in the presence of red cells as has been observed by others. Effective platelet diffusion coefficients, calculated from the data on adhesion to the collagen surface, increased with increasing shear rate. Very little platelet adhesion to the albumin-coated surface, known to be unreactive to platelets, was observed when measured over a 15 min time period at 300 s-1 shear rate, indicating that the device itself does not stimulate the platelets in the flow field. The data generated provide validation for this device as a simple means of measuring cell adhesion under controlled flow conditions to any smooth surface available in flat plate form. © 1997 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Medicine 31 (1980), S. 89-96 
    ISSN: 0066-4219
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...