Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: DISEASE ; DISEASES ; GENE ; GENES ; PROTEIN ; PROTEINS ; RNA ; DNA ; recombination ; tumour ; BIOLOGY ; SEQUENCE ; chromosome ; NUMBER ; MUTATION ; inactivation ; REGION ; MUTATIONS ; EVOLUTION ; DEGRADATION ; CHROMOSOMES ; GENE FAMILY ; AID ; HUMAN GENOME SEQUENCE ; INACTIVATION CENTER ; LINKED MENTAL-RETARDATION ; MAMMALIAN Y-CHROMOSOME ; REPEAT HYPOTHESIS
    Abstract: The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence
    Type of Publication: Journal article published
    PubMed ID: 15772651
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: brain ; SPECTRA ; CELLS ; IN-VITRO ; tumor ; AGENTS ; CELL ; human ; MODEL ; VITRO ; DISEASE ; TUMORS ; MICE ; ACTIVATION ; LIGAND ; BINDING ; SUPPRESSION ; MOLECULE ; RECOGNITION ; ACID ; GLYCOPROTEIN ; PATHOGENESIS ; DOSE-RESPONSE ; LIGANDS ; EPITHELIAL-CELLS ; specificity ; DMBT1 ; AGENT ; AGGREGATION ; MOTIF ; PRODUCTS ; brain tumor ; BRAIN-TUMORS ; COLITIS ; interaction ; SODIUM ; pattern recognition ; structure ; brain tumors ; LPS ; Genetic ; genetic study ; BRAIN-TUMOR ; A
    Abstract: Deleted in malignant brain tumors 1 (DMBT1) is a secreted glycoprotein displaying a broad bacterial-binding spectrum. Recent functional and genetic studies linked DMBT1 to the suppression of LPS-induced TLR4-mediated NF-kappaB activation and to the pathogenesis of Crohn's disease. Here, we aimed at unraveling the molecular basis of its function in mucosal protection and of its broad pathogen-binding specificity. We report that DMBT1 directly interacts with dextran sulfate sodium (DSS) and carrageenan, a structurally similar sulfated polysaccharide, which is used as a texturizer and thickener in human dietary products. However, binding of DMBT1 does not reduce the cytotoxic effects of these agents to intestinal epithelial cells in vitro. DSS and carrageenan compete for DMBT1-mediated bacterial aggregation via interaction with its bacterial-recognition motif. Competition and ELISA studies identify poly-sulfated and poly-phosphorylated structures as ligands for this recognition motif, such as heparansulfate, LPS, and lipoteichoic acid. Dose-response studies in Dmbt1(-/-) and Dmbt1(+/+) mice utilizing the DSS-induced colitis model demonstrate a differential response only to low but not to high DSS doses. We propose that DMBT1 functions as pattern-recognition molecule for poly-sulfated and poly-phosphorylated ligands providing a molecular basis for its broad bacterial-binding specificity and its inhibitory effects on LPS-induced TLR4-mediated NF-kappaB activation.
    Type of Publication: Journal article published
    PubMed ID: 19189310
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: brain ; RECEPTOR ; CELLS ; EXPRESSION ; IN-VITRO ; INVASION ; tumor ; CELL ; Germany ; VITRO ; DISEASE ; GENE ; PROTEIN ; PROTEINS ; COMPONENTS ; TUMORS ; PATIENT ; NF-KAPPA-B ; ACTIVATION ; COMPLEX ; COMPLEXES ; BINDING ; RECOGNITION ; TARGET ; MUTATION ; COMPONENT ; LINE ; MUTATIONS ; EPITHELIAL-CELLS ; FACTOR-KAPPA-B ; NF-kappa B ; TNF-ALPHA ; SALIVARY AGGLUTININ ; SURFACTANT PROTEIN-D ; INFLAMMATORY-BOWEL-DISEASE ; MALIGNANT BRAIN-TUMORS ; SCAVENGER RECEPTOR ; CYTOKINE ; BRAIN-TUMORS ; STREPTOCOCCUS-MUTANS ; secretion ; PATHOGENS ; USA ; function ; immunology ; INHIBIT ; CYSTEINE-RICH DOMAINS ; DYSFUNCTION ; PURPLE SEA-URCHIN ; SEROTYPE-C STRAIN
    Abstract: Mucosal epithelial cell layers are constantly exposed to a complex resident microflora. Deleted in malignant brain tumors 1 (DMBT1) belongs to the group of secreted scavenger receptor cysteine-rich proteins and is considered to be involved in host defense by pathogen binding. This report describes the regulation and function of DMBT1 in intestinal epithelial cells, which form the primary immunological barrier for invading pathogens. We report that intestinal epithelial cells up-regulate DMBT1 upon proinflammatory stimuli (e.g., TNF-alpha, LPS). We demonstrate that DMBT1 is a target gene for the intracellular pathogen receptor NOD2 via NF-kappa B activation. DMBT1 is strongly up-regulated in the inflamed intestinal mucosa of Crohn's disease patients with wild-type, but not with mutant NOD2. We show that DMBT1 inhibits cytoinvasion of Salmonella enterica and LPS- and muramyl dipeptide-induced NF-kappa B activation and cytokine secretion in vitro. Thus, DMBT1 may play an important role in the first line of mucosal defense conferring immune exclusion of bacterial cell wall components. Dysregulated intestinal DMBT1 expression due to mutations in the NOD2/CARD15 gene may be part of the complex pathophysiology of barrier dysfunction in Crohn's disease
    Type of Publication: Journal article published
    PubMed ID: 17548659
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: EXPRESSION ; IN-VITRO ; SURVIVAL ; Germany ; MODEL ; VITRO ; CLASSIFICATION ; CDNA ; GENOME ; microarray ; RNA ; SAMPLE ; SAMPLES ; MESSENGER-RNA ; BREAST-CANCER ; NO ; AMPLIFICATION ; microarrays ; REQUIRES ; PARAMETERS ; STATISTICAL-ANALYSIS ; DIFFERENTIAL EXPRESSION ; QUANTITIES ; LACKING ; REQUIREMENT ; bias ; PNEUMOPERITONEUM
    Abstract: Background: The requirement of a large amount of high-quality RNA is a major limiting factor for microarray experiments using biopsies. An average microarray experiment requires 10-100 mug of RNA. However, due to their small size, most biopsies do not yield this amount. Several different approaches for RNA amplification in vitro have been described and applied for microarray studies. In most of these, systematic analyses of the potential bias introduced by the enzymatic modifications are lacking. Results: We examined the sources of error introduced by the T7 RNA polymerase based RNA amplification method through hybridisation studies on microarrays and performed statistical analysis of the parameters that need to be evaluated prior to routine laboratory use. The results demonstrate that amplification of the RNA has no systematic influence on the outcome of the microarray experiment. Although variations in differential expression between amplified and total RNA hybridisations can be observed, RNA amplification is reproducible, and there is no evidence that it introduces a large systematic bias. Conclusions: Our results underline the utility of the T7 based RNA amplification for use in microarray experiments provided that all samples under study are equally treated
    Type of Publication: Journal article published
    PubMed ID: 15119961
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: EXPRESSION ; Germany ; human ; DISEASE ; GENE ; GENE-EXPRESSION ; GENES ; TISSUE ; TISSUES ; LINKAGE ; MOUSE ; IDENTIFICATION ; IN-SITU ; gene expression ; NUMBER ; DATABASE ; REGION ; REGIONS ; LOCALIZATION ; ORGANIZATION ; RE ; EXPRESSION PATTERNS ; MAP ; MENTAL-RETARDATION ; SUBUNIT PROTEIN ; CPG-BINDING PROTEIN-2
    Abstract: Background: Well known for its gene density and the large number of mapped diseases, the human sub-chromosomal region Xq28 has long been a focus of genome research. Over 40 of approximately 300 X-linked diseases map to this region, and systematic mapping, transcript identification, and mutation analysis has led to the identification of causative genes for 26 of these diseases, leaving another 17 diseases mapped to Xq28, where the causative gene is still unknown. To expedite disease gene identification, we have initiated the functional characterisation of all known Xq28 genes. Results: By using a systematic approach, we describe the Xq28 genes by RNA in situ hybridisation and Northern blotting of the mouse orthologs, as well as subcellular localisation and data mining of the human genes. We have developed a relational web-accessible database with comprehensive query options integrating all experimental data. Using this database, we matched gene expression patterns with affected tissues for 16 of the 17 remaining Xq28 linked diseases, where the causative gene is unknown. Conclusion: By using this systematic approach, we have prioritised genes in linkage regions of Xq28-mapped diseases to an amenable number for mutational screens. Our database can be queried by any researcher performing highly specified searches including diseases not listed in OMIM or diseases that might be linked to Xq28 in the future
    Type of Publication: Journal article published
    PubMed ID: 16503986
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: brain ; RECEPTOR ; CELLS ; EXPRESSION ; tumor ; CELL ; Germany ; IN-VIVO ; VIVO ; DISEASE ; RISK ; GENOME ; HYBRIDIZATION ; PROTEIN ; SAMPLE ; TISSUE ; TUMORS ; MICE ; PATIENT ; DOMAIN ; GENETIC POLYMORPHISMS ; TISSUES ; polymorphism ; POLYMORPHISMS ; SUSCEPTIBILITY ; DELETION ; IN-SITU ; prevention ; immunohistochemistry ; UP-REGULATION ; NUMBER ; PATHOGENESIS ; DISPLAY ; HUMAN GENOME ; SURFACE ; EPITHELIAL-CELLS ; genetic polymorphism ; NORMAL TISSUE ; CHAIN-REACTION ; SMALL-INTESTINE ; ULCERATIVE-COLITIS ; TERMINAL DIFFERENTIATION ; inflammation ; SALIVARY AGGLUTININ ; SURFACTANT PROTEIN-D ; INFLAMMATORY-BOWEL-DISEASE ; MALIGNANT BRAIN-TUMORS ; SCAVENGER RECEPTOR ; in situ hybridization ; CHAIN ; BRAIN-TUMORS ; pathogen ; VARIANT ; ALLELE ; inflammatory bowel disease ; LEVEL ; methods ; SUBTYPES ; SULFATE ; USA ; function ; INCREASED RISK ; odds ratio ; in vivo ; case control ; quantitative ; MUCOSAL ; EXONS ; CRP-DUCTIN ; DEXTRAN SULFATE SODIUM
    Abstract: Background & Aims: Impaired mucosal. defense plays an important role in the pathogenesis of Crohn's disease (CD), one of the main subtypes of inflammatory bowel disease (IBD). Deleted in malignant brain tumors 1(DMBT1) is a secreted scavenger receptor cysteine-rich protein with predominant expression in. the intestine and has been proposed to exert possible functions in regenerative processes and pathogen defense. Here, we aimed at analyzing the role of DMBT1 in IBD. Methods: We studied DMBT1 expression in IBD and normal tissues by quantitative reverse transcription-polymerase chain reaction, immunohistochemistry, and mRNA in situ hybridization. Genetic polymorphisms within DMBT1 were analyzed in an Italian IBD case-control sample. Dmbt1(-/-) mice were generated, characterized, and analyzed for their susceptibility to dextran sulfate sodium-induced colitis. Results: DMBT1 levels correlate with disease activity in inflamed IBD tissues. A highly significant fraction of the patients with IBD displayed up-regulation of DMBT1 specifically in the intestinal epithelial surface cells and Paneth cells. A deletion allele of DMBT1 with a reduced: number of scavenger receptor cysteine-rich domain coding exons is associated with an increased risk of CD (P =.00056; odds ratio, 1.75) but not for ulcerative colitis. Dmbt1(-/-) mice display enhanced susceptibility to dextran sulfate sodium-induced colitis and elevated Tnf, Il6, and Nod2 expression levels during inflammation. Conclusions: DMBT1 may play a role in intestinal mucosal protection and prevention of inflammation. Impaired DMBT1 function may contribute to the pathogenesis of CD
    Type of Publication: Journal article published
    PubMed ID: 17983803
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: brain ; RECEPTOR ; CANCER ; CELLS ; EXPRESSION ; Germany ; GENERATION ; LUNG-CANCER ; SYSTEM ; CDNA ; CLONING ; PROTEIN ; DIFFERENTIATION ; TIME ; INFECTION ; DOMAIN ; BINDING ; polymorphism ; VARIANTS ; MOLECULE ; VECTOR ; LINE ; TUMOR-SUPPRESSOR GENE ; LIGANDS ; SUPERFAMILY ; EPITHELIAL-CELLS ; Jun ; DMBT1 ; HENSIN ; SALIVARY AGGLUTININ ; SURFACTANT PROTEIN-D ; STREPTOCOCCUS-MUTANS ; SRCR ; GENETIC-POLYMORPHISM ; SIZE ; glycoprotein-340
    Abstract: Deleted in malignant brain tumours 1 (DMBT1) codes for a similar to 340 kDa glycoprotein with highly repetitive scavenger receptor cysteine-rich (SRCR) domains. DMBT1 was implicated in cancer. defence against viral and bacterial infections, and differentiation of epithelial cells. Recombinant expression and purification of DMBT1 is an essential step for systematic standardized functional research and towards the evaluation of its therapeutical potential. So far, DMBT1 is obtained from natural sources such as bronchioalveolar lavage or saliva, resulting in time consuming sample collection, low yields, and protein preparations which may substantially vary due to differential processing and genetic polymorphism, all of which impedes functional research on DMBT1. Cloning of DMBT1 cDNAs is hampered because of the size and the 13 highly homologous SRCR exons. In this Study, we report oil the setup of a vector system that facilitates cloning of DMBT1 variants. We demonstrate applicability of the vector system by expression of the largest DMBT1 variant in a tetracycline-inducible mammalian expression system using the Chinese hamster ovary cell line. Yields Lip to 30 mg rDMBT1 per litre of cell Culture supernatant could be achieved with an optimized production procedure. By harnessing the specific bacteria-binding property of DMBT1 we established an affinity purification procedure which allows the isolation of more than 3 mg rDMBT1 with a Purity of about 95 %. Although the glycosylation moieties of rDMBT1 are different front DMBT1(SAG) isolated front saliva, we demonstrate that rDMBT1 is functionally active in aggregating Gram-positive and Gram-negative bacteria and binding to C1q and lactoferrin, which represent two known endogenous DMBT1 ligands. (c) 2005 Elsevier Inc. All rights reserved
    Type of Publication: Journal article published
    PubMed ID: 15866713
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0888-7543
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Familial incontinentia pigmenti (IP; MIM 308310) is a genodermatosis that segregates as an X-linked dominant disorder and is usually lethal prenatally in males. In affected females it causes highly variable abnormalities of the skin, hair, nails, teeth, eyes and central nervous system. The ...
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1777
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract As a part of the functional analysis of the region from the position of the fragile X mutation to the telomere of the long arm of the human X Chromosome (Chr), we have developed a number of different approaches to identify genes located in this area. We describe here a procedure allowing the rapid identification of expressed sequences based on the hybridization of radioactively labeled complex cDNA probes derived from different pig and human tissues to cosmid clones gridded onto nylon filters and to restriction fragments of these clones. This technique has allowed the identification of a number of differentially expressed sequences in cosmid clones covering most of the Xq27.3 to Xqter region. Using these sequences as hybridization probes, cDNA clones for new genes expressed in a tissue-specific manner were isolated. Applied to genomic regions defined by overlapping cosmid clones, this method will serve as a major component in our strategy to establish integrated physical and transcription maps.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...