Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Abstract: Background: Ependymomas account for up to 10% of childhood CNS tumors and have a high rate of tumor recurrence despite gross total resection. Recently, classification into molecular ependymoma subgroups has been established, but the mechanisms underlying the aggressiveness of certain subtypes remain widely enigmatic. The aim of this study was to dissect the clinical and biological role of telomerase reactivation, a frequent mechanism of cancer cells to evade cellular senescence, in pediatric ependymoma. Methods: We determined telomerase enzymatic activity, hTERT mRNA expression, promoter methylation, and the rs2853669 single nucleotide polymorphism located in the hTERT promoter in a well-characterized cohort of pediatric intracranial ependymomas. Results: In posterior fossa ependymoma group A (PF-EPN-A) tumors, telomerase activity varied and was significantly associated with dismal overall survival, whereas telomerase reactivation was present in all supratentorial RelA fusion-positive (ST-EPN-RELA) ependymomas. In silico analysis of methylation patterns showed that only these two subgroups harbor hypermethylated hTERT promoters suggesting telomerase reactivation via epigenetic mechanisms. Furthermore, chromosome 1q gain, a well-known negative prognostic factor, was strongly associated with telomerase reactivation in PF-EPN-A. Additional in silico analyses of gene expression data confirmed this finding and further showed enrichment of the E-twenty-six factor, Myc, and E2F target genes in 1q gained ependymomas. Additionally, 1q gained tumors showed elevated expression of ETV3, an E-twenty-six factor gene located on chromosome 1q. Conclusion: Taken together we describe a subgroup-specific impact of telomerase reactivation on disease progression in pediatric ependymoma and provide preliminary evidence for the involved molecular mechanisms.
    Type of Publication: Journal article published
    PubMed ID: 28371821
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1434-6036
    Keywords: PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 75.10.Lp Band and itinerant models – 75.50.Ee Antiferromagnetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: We supplement (and critically overview) the existing extensive analysis of antiferromagnetic solution for the Hubbard model with a detailed discussion of two specific features, namely (i) the evolution of the magnetic (Slater) gap (here renormalized by the electronic correlations) into the Mott-Hubbard or atomic gap, and (ii) a rather weak renormalization of the effective mass by the correlations in the half-filled-band case, which contrasts with that for the paramagnetic case. The mass remains strongly enhanced in the non-half-filled-band case. We also stress the difference between magnetic and non-magnetic contributions to the gap. These results are discussed within the slave boson approach in the saddle-point approximation, in which there appears a non-linear staggered molecular field due to the electronic correlations that leads to the appearance of the magnetic gap. They reproduce correctly the ground-state energy in the limit of strong correlations. A brief comparison with the solution in the limit of infinite dimensions and the corresponding situation in the doubly-degenerate-band case with one electron per atom is also made.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Abstract: Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.
    Type of Publication: Journal article published
    PubMed ID: 25043047
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...