Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Key words Barley ; Genome mapping ; Stripe rust ; Leaf rust ; BYDV ; Resistance Gene Analog Polymorphism ; QTL
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Stripe rust, leaf rust, and Barley Yellow Dwarf Virus (BYDV) are important diseases of barley (Hordeum vulgare L). Using 94 doubled-haploid lines (DH) from the cross of Shyri x Galena, multiple disease phenotype datasets, and a 99-marker linkage map, we determined the number, genome location, and effects of genes conferring resistance to these diseases. We also mapped Resistance Gene Analog Polymorphism (RGAP) loci, based on degenerate motifs of cloned disease resistance genes, in the same population. Leaf rust resistance was determined by a single gene on chromosome 1 (7H). QTLs on chromosomes 2 (2H), 3 (3H), 5 (1H), and 6 (6H) were the principal determinants of resistance to stripe rust. Two- locus QTL interactions were significant determinants of resistance to this disease. Resistance to the MAV and PAV serotypes of BYDV was determined by coincident QTLs on chromosomes 1 (7H), 4 (4H), and 5 (1H). QTL interactions were not significant for BYDV resistance. The associations of molecular markers with qualitative and quantitative disease resistance loci will be a useful information for marker-assisted selection.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Key words Brittle rachis ; Weak rachis ; QTL ; Spike density ; Peduncle curvature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Head shattering in barley (Hordeum vulgare L.) has two forms; brittle rachis and weak rachis. Brittle rachis is not observed in cultivated barley since all cultivars carry non-brittle alleles at one of the two complementary brittle rachis loci (Btr1;Btr2). Weak rachis causes head shattering in barley cultivars and may be confused with brittle rachis. Brittle rachis has been mapped to the chromosome 3 (3H) short arm while map position(s) of the weak rachis is unknown. Two major and a putative minor QTL for head shattering were mapped using the Steptoe × Morex doubled haploid line population. The largest QTL, designated Hst-3, located on the chromosome 3 (3H) centromeric region, is associated with a major yield QTL. The Steptoe Hst-3 region, when transferred into Morex, resulted in a substantial decrease in head shattering. High-resolution mapping of Hst-3 was achieved using isogenic lines. Brittle rachis was mapped with molecular markers and shown to be located in a different position from that of Hst-3. The second major QTL, designated Hst-2 S, is located on chromosome 2 S. This locus is associated with an environmentally sensitive yield QTL.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: Key words Barley ; BAC library ; P-loop genes ; Resistance-gene analog (RGA)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Modern cultivated barley is an important cereal crop with an estimated genome size of 5000 Mb. To develop the resources for positional cloning and structural genomic analyses in barley, we constructed a bacterial artificial chromosome (BAC) library for the cultivar Morex using the cloning enzyme HindIII. The library contains 313344 clones (816 384-well plates). A random sampling of 504 clones indicated an average insert size of 106 kbp (range=30–195 kbp) and 3.4% empty vectors. Screening the colony filters for chloroplast DNA content indicated an exceptionally low 1.5% contamination with chloroplast DNA. Thus, the library provides 6.3 haploid genome equivalents allowing a 〉99% probability of recovering any specific sequence of interest. High-density filters were gridded robotically using a Genetix Q-BOT in a 4×4 double-spotted array on 22.5-cm2 filters. Each set of 17 filters allows the entire library to be screened with 18432 clones represented per filter. Screening the library with 40 single copy probes identified an average 6.4 clones per probe, with a range of 1–13 clones per probe. A set of resistance-gene analog (RGA) sequences identified 121 RGA-containing BAC clones representing 20 different regions of the genome with an average of 6.1 clones per locus. Additional screening of the library with a P-loop disease resistance primer probe identified 459 positive BAC clones. These data indicate that this library is a valuable resource for structural genomic applications in barley.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2242
    Keywords: RFLP ; Mapping ; Barley ; Genome ; Centromeres
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A map of the barley genome consisting of 295 loci was constructed. These loci include 152 cDNA restriction fragment length polymorphism (RFLP), 114 genomic DNA RFLP, 14 random amplified polymorphic DNA (RAPD), five isozyme, two morphological, one disease resistance and seven specific amplicon polymorphism (SAP) markers. The RFLP-identified loci include 63 that were detected using cloned known function genes as probes. The map covers 1,250 centiMorgans (cM) with a 4.2 cM average distance between markers. The genetic lengths of the chromosomes range from 124 to 223 cM and are in approximate agreement with their physical lengths. The centromeres were localized to within a few markers on all of the barley chromosomes except chromosome 5. Telomeric regions were mapped for the short (plus) arms of chromosomes 1, 2 and 3 and the long (minus) arm of chromosomes 7.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2242
    Keywords: Key words Barley ; Fusarium head blight (FHB) ; QTL mapping ; Plant architecture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Fusarium head blight (FHB), an important disease of barley in many areas of the world, causes losses in grain yield and quality. Deoxynivalenol (DON) mycotoxin residues, produced by the primary pathogen Fusarium graminearum, pose potential health risks. Barley producers may not be able to profitably market FHB-infected barley, even though it has a low DON level. Three types of FHB resistance have been described in wheat: Type I (penetration), Type II (spread), and Type III (mycotoxin degradation). We describe putative measures of these three types of resistance in barley. In wheat, the three resistance mechanisms show quantitative inheritance. Accordingly, to study FHB resistance in barley, we used quantitative trait locus (QTL) mapping to determine the number, genome location, and effects of QTLs associated with Type-I and -II resistance and the concentration of DON in the grain. We also mapped QTLs for plant height, heading date, and morphological attributes of the inflorescence (seeds per inflorescence, inflorescence density, and lateral floret size). QTL analyses were based on a mapping population of F1-derived doubled-haploid (DH) lines from the cross of the two-rowed genotypes Gobernadora and CMB643, a linkage map constructed with RFLP marker loci, and field evaluations of the three types of FHB resistance performed in China, Mexico, and two environments in North Dakota, USA. Resistance QTLs were detected in six of the seven linkage groups. Alternate favorable alleles were found at the same loci when different inoculation techniques were used to measure Type-I resistance. The largest-effect resistance QTL (for Type-II resistance) was mapped in the centromeric region of chromosome 2. All but two of the resistance QTLs coincided with QTLs determining morphological attributes of the inflorescence and/or plant height. Additional experiments are needed to determine if these coincident QTLs are due to linkage or pleiotropy and to more clearly define the biological basis of the FHB resistance QTLs. Plant architecture should be considered in FHB resistance breeding efforts, particularly those directed at resistance QTL introgression and/or pyramiding.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2242
    Keywords: Hordeum vulgare ; Nitrate reductase ; Linkage ; Mutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The nar2 locus that codes for a protein involved in molybdenum cofactor function in nitrate reductase and other molybdoenzymes was mapped to barley chromosome 7. F2 genotypic data from F3 head rows indicated nar2 is located 8.4±2.1 and 23.0± 4.6 cm from the narrow leaf dwarf (nld) and mottled seedling (mt2) loci, respectively. This locates the nar2 locus at 54.7±3.1 cm from the short-haired rachilla (s) locus near the centromere of chromosome 7. Close linkage of nar2 with DDT resistance (ddt) and high lysine (lys3) loci was detected but could not be quantified due to deviations from the individual expected 1∶2∶1 segregations for the ddt and lys3 genes. Southern blots of wheat-barley addition lines probed with a nitrate reductase cDNA located the NADH : nitrate reductase structural gene, nar1, to chromosome 6.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1617-4623
    Keywords: Map-based cloning Resistance genes Barley genome Stem rust
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. The barley stem rust resistance gene rpg4 was physically and genetically localized on two overlapping BAC clones covering an estimated 300-kb region of the long arm of barley chromosome 7(5H). Initially, our target was mapped within a 6.0-cM region between the previously described flanking markers MWG740 and ABG391. This region was then saturated by integrating new markers from several existing barley and rice maps and by using BAC libraries of barley cv. Morex and rice cv. Nipponbare. Physical/genetic distances in the vicinity of rpg4 were found to be 1.0 Mb/cM, which is lower than the average for barley (4 Mb/cM) and lower than that determined by translocation breakpoint mapping (1.8 Mb/cM). Synteny at high resolution levels has been established between the region of barley chromosome 7(5H) containing the rpg4 locus and the subtelomeric region of rice chromosome 3 between markers S16474 and E10757. This 1.7-cM segment of the rice genome was covered by two overlapping BAC clones, about 250 kb of total length. In barley the markers S16474 and E10757 genetically delimit rpg4, lying 0.6 cM distal and 0.4 cM proximal to the locus, respectively.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...