Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1912
    Keywords: Muscarinic receptor subtypes ; Presynaptic muscarinic autoreceptors ; Cholinesterase inhibition ; Parasympathetic nervous system ; Heart
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of muscarinic receptor antagonists on ACh release were studied in the absence or presence of cholinesterase (ChE) inhibition using the isolated perfused chicken heart. Presynaptic inhibitory muscarinic autoreceptor were characterized by determining the potency of various antagonists to enhance [3H]-ACh release evoked by field stimulation (3 Hz, 1 min). The order of potencies was: (±)-telenzepine 〉 atropine 〉 4-DAMP 〉 silahexocyclium 〉 pirenzepine 〉 hexahydro-siladifenidol 〉 AF-DX 116. The comparison with known pA2 values for M1-, M2- and M3-receptors revealed that the presynaptic autoreceptor meets the criteria of an M1-receptor. Basal, not electrically evoked overflow of unlabelled ACh into the perfusate was caused by ‘leakage’ release (non-exocytotic), as it was independent of extracellular Ca2+ . Muscarinic receptor antagonists failed to enhance basel overflow. In contrast, when ChE activity was inhibited by 10−6M tacrine or pretreatment with 10−4M DFP, the ACh overflow was partially Ca2+-dependent and was reduced by tetrodotoxine. Moreover, block of the inhibitory muscarinic autoreceptors by (±)-telenzepine or pirenzepine caused a several-fold enhancement of the ACh release. The potencies of these antagonists were identical to those found for the electrically evoked [3H]-ACh release. The rate of ACh release enhanced by ChE inhibition plus telenzepine corresponds to about 12% of the total ACh pool per min, which is about the maximum amount of ACh that is available for any kind of stimuli. The release was dependent on the presence of exogenous choline. Hence elevation of ACh release led to a correspondingly enhanced ACh synthesis. The dramatic enhancement of ACh release by the ChE inhibition in combination with a block of presynaptic muscarinic autoinhibition was not inhibited by (+)-tubocurarine but by atropine (10−9 to 10−7 M) or 10−6 M telenzepine. It is concluded that basal release of ACh in the heart was due to non-exocytotic ‘leakage’ release. Inhibition of ChE led to a marked stimulation of excitatory muscarinic receptors of the intrinsic parasympathetic neuron with a consecutive postganglionic release of ACh. The strong postganglionic excitation was obvious when the inhibitory muscarinic autoreceptors were selectively blocked. Of the two described muscarinic receptors found in the parasympathetic postganglionic neuron of the chicken heart only the inhibitory was classified as being M1, whereas the subtype of the excitatory one is unlike M1 and remains to be identified.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1912
    Keywords: Phospholipase D ; Protein kinase C ; Phorbol ester ; Aluminum fluoride ; Signal transduction pathways ; Heart
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Evidence for a general role of phospholipase D in signal transduction is accumulating. In the present study, the activity of the enzyme was investigated in heart tissue under basal conditions and after addition of phorbol esters or aluminum fluoride (AlF inf4 sup− ; 10 mM NaF plus 10 μM AlCl3). Atria of rats and chickens were incubated with [3H]-myristic acid in order to label preferentially phosphatidylcholine. Under basal conditions, the tissues generated choline and phosphatidic acid (PtdOH), the primary catalytic products of phospholipase D. When 0.5 or 2.0% ethanol was present, [3H]-phosphatidyl-ethanol (PETH) was rapidly formed at the expense of [3H]-PtdOH. This transphosphatidylation reaction is specific for phospholipase D activity. The basal formation of PETH was not inhibited by a Ca2+-free, EGTA-containing medium. - The phorbol ester 4β-phorbol-12β,13α-dibutyrate (PDB), which is known to activate protein kinase C, enhanced the net formation of choline, whereas the inactive 4β-phorbol-13α-acetate (PAc) was ineffective. PDB (0.2 μM), in contrast to PAc, also increased the formation of [3H]-PtdOH and, in the presence of ethanol, of [3H]-PETH. The PDB-evoked formation of PETH occurred again at the expense of PtdOH. Treshold and maximum effective concentrations of PDB were 10 nM and 0.2–0.6 μM, respectively. The effects of PDB on either choline efflux and generation of PETH showed the same Cat+-dependency, i.e., both effects were blocked by a Ca2+-free, EGTA-containing medium, but not by a Ca2+-free medium without EGTA. In protein kinase C-deficient tissue which was prepared by pretreatment with 0.61 μM PDB for 27 h, PDB failed to enhance the formation of PtdOH and PETH. - A1F4−, a known activator of G-proteins, increased not only the tissue content of inositol phosphates, but also markedly enhanced choline efflux and formation of [3H]-PtdOH and PETH. In conclusion, in mammalian and avian atria a high phospholipase D activity was found even under basal conditions. The enzyme was stimulated by protein kinase C and presumably by a G protein.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1912
    Keywords: Key words Ethanol ; Acetylcholine ; Scopolamine ; Hippocampus ; Microdialysis ; HPLC
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Using the microdialysis technique and sensitive HPLC procedures for the determination of acetylcholine (ACh) and ethanol, we investigated the release of ACh in rat hippocampus after acute ethanol administration. Systemic administration of ethanol (0.8 and 2.4 g/kg i.p.) led to peak ethanol concentrations of 21 and 42 mM in the hippocampus, respectively. The high dose caused a long-lasting inhibition of basal ACh release by up to 33%. Local infusion of scopolamine (1 µM) enhanced hippocampal ACh release up to eightfold in the presence of neostigmine (10 µM), and this stimulated release was also inhibited after systemic ethanol administration (by up to 45%). The low dose of ethanol (0.8 g/kg) led to a delayed stimulation of hippocampal ACh release. A stimulatory effect on ACh release was also observed when ethanol (50–100 mM) was infused directly into the hippocampus or into the septal area, i.e. to the origin of the cholinergic septohippocampal pathway; thus, the stimulatory effect may be mediated by a direct effect on cholinergic fibres. We conclude that ethanol exerts dual modulatory effects on the activity of the septohippocampal cholinergic fibres, depending on the dose and the site of administration. It is suggested that the inhibition of hippocampal ACh release by intoxicating doses of ethanol may contribute to the well-known cognitive and amnesic effects of ethanol intake.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Central cholinergic neurotransmission was studied in learning-impaired transgenic mice expressing human acetylcholinesterase (hAChE-Tg). Total catalytic activity of AChE was approximately twofold higher in synaptosomes from hippocampus, striatum and cortex of hAChE-Tg mice as compared with controls (FVB/N mice). Extracellular acetylcholine (ACh) levels in the hippocampus, monitored by microdialysis in the absence or presence of 10−8−10−3m neostigmine in the perfusion fluid, were indistinguishable in freely moving control and hAChE-Tg mice. Muscarinic receptor functions were unchanged as indicated by similar effects of scopolamine on ACh release and of carbachol on inositol phosphate formation. However, when the mice were anaesthetized with halothane (0.8 vol. %), hippocampal ACh reached significantly lower levels in AChE-Tg mice as compared with controls. Also, the high-affinity choline uptake (HACU) in hippocampal synaptosomes from awake hAChE-Tg mice was accelerated but was reduced by halothane anaesthesia. Moreover, hAChE-Tg mice displayed increased motor activity in novel but not in familiar environment and presented reduced anxiety in the elevated plus-maze test. Systemic application of a low dose of physostigmine (100 µg/kg i.p.) normalized all of the enhanced parameters in hAChE-Tg mice: spontaneous motor activity, hippocampal ACh efflux and hippocampal HACU, attributing these parameters to the hypocholinergic state due to excessive AChE activity. We conclude that, in hAChE-Tg mice, hippocampal ACh release is up-regulated in response to external stimuli thereby facilitating cholinergic neurotransmission. Such compensatory phenomena most likely play important roles in counteracting functional deficits in mammals with central cholinergic dysfunctions.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Choline (Ch) is an essential nutrient as the biosynthetic precursor of acetylcholine (ACh) and phospholipids. Under resting conditions, the intracellular accumulation of Ch (above 10-fold), which is positively charged, is governed by the membrane potential and follows the Nernst equation. Accordingly, in synaptosomes from adult rats during depolarization, we observed a linear relationship between release of free cytoplasmic Ch and KCl concentration (2.7–120 mm). The K+-evoked Ch release was Ca2+-independent and did not originate from ACh or phospholipid hydrolysis. In superfused brain slices of adult rats, however, a K+-induced Ch efflux was absent. Also, under in vivo conditions, 30–60 mm KCl failed to increase the extracellular Ch level as shown by microdialysis in adult rat hippocampus. On the contrary, in brain slices from 1-week-old rats, high K+ as well as 4-aminopyridine evoked a marked Ch efflux in a concentration-dependent fashion. This phenomenon faded within 1 week. Hemicholinium-3 (HC-3, 1␣and 10 µm), a blocker of cellular choline uptake, caused a marked efflux of choline from adult rat slices but no or significantly less release from immature slices. We conclude that depolarization of synaptic endings causes a Ca2+-independent release of free cytoplasmic Ch into the extracellular space. In adult rat brain, this elevation of Ch is counteracted by a homeostatic mechanism such as uptake into brain cells.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Phospholipase D (PLD) activity was determined in rat hippocampal slices between postnatal days 3 and 35. After birth, basal PLD activity was low and, within 2 weeks, increased to reach a plateau that was maintained up to the adult age. Likewise the response to glutamate developed postnatally to reach a maximum at day 8, but then faded rapidly and was almost absent at day 35. Activation of PLD by 4β-phorbol 12β,13α-dibutyrate (PDB) was independent of age, whereas the effect of aluminum fluoride (AlF4−) increased to a plateau within the first week. At day 8, PLD stimulation by glutamate via metabotropic receptors involved protein kinase C activation, but was independent of Ca2+ influx; the time course of PLD activation by PDB or AlF4− was linear throughout the experiment, whereas the response to glutamate or 1-aminocyclopentane-1,3-dicarboxylic acid followed a biphasic pattern: the rapid “first phase activation” desensitized within a few minutes and disclosed a small, but maintained “second phase.” Pretreatment experiments confirmed desensitization of PLD activation by glutamate, but not by AlF4− or PDB. The biphasic pattern of glutamatergic PLD activation changed during development, i.e., the first phase activation faded and the second phase remained. These results were fully confirmed by the time courses of the PLD-mediated efflux of choline evoked by glutamate. In conclusion, postnatal glutamatergic activation of hippocampal PLD is composed of a pronounced and desensitizing first phase activation and a small, but nondesensitizing second phase. The first, but not the second, phase activation fades rapidly during development. The hypothesis is discussed that the glutamatergic activation of PLD occurs along different pathways in neonate and adult tissue.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The present study is concerned with the uptake and metabolism of choline by the rat brain. Intraperitoneal administration of choline chloride (4-60 mg/kg) caused a dose-dependent elevation of the plasma choline concentration from 11.8 to up to 165.2 μM within 10 min and the reversal of the negative arteriovenous difference (AVD) of choline across the brain to positive values at plasma choline levels of 〉23 μM. Net choline release and uptake were linearly dependent on the plasma choline level in the physiological range of 10-50 μM, whereas the CSF choline level was significantly increased only at plasma choline levels of 〉50 μM. The bolus injection of 60 mg/kg of [3H]choline chloride caused the net uptake of 〉 500 μMol/g of choline by the brain as calculated from the AVD, which was reflected in a minor increase of free choline level and a long-lasting increase of brain phosphorylcholine content, which paralleled the uptake curve. Loss of label from phosphorylcholine 30 min to 24 h after choline administration was accompanied by an increase of label in phosphatidylcholine, an indication of a delayed transfer of newly taken-up choline into membrane choline pools. In conclusion, homeostasis of brain choline is maintained by a complex system that interrelates choline net movements into and out of the brain and choline incorporation into and release from phospholipids.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Phospholipase D (PLD) is activated by many neuro-transmitters in a novel signal transduction pathway. In the present work, PLD activity was studied comparatively in hippocampal slices of newborn and adult rats. Basal PLD activity in adult rats was almost three times higher than in newborn rats. In newborn rats, L-glutamate and 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) time- and concentrationdependently enhanced the formation of [3H]phosphatidylpropanol ([3H]PP) and of [3H]phosphatidic acid in the presence of 2% propanol. N-MethylD-aspartate and kainate (both 1 mM) caused small, but significant increases (∼50%). whereas α-amino-3-hydroxy-5-methylisoxazole-4-propionate (100 μM) was ineffective. Maximally effective concentrations of glutamate (1 mM) and of 1S,3R-ACPD (300 μM) increased the PLD activity to almost 300% of basal activity; the EC50 values were 199 and 47 μM, respectively. Glutamate receptor antagonists, such as DL-2-amino-3-phosphonopropionic acid (AP3). DL-2-aminc-5-phosphonovalenic acid, and kynurenate (all 1 mM) did not inhibit the glutamate-evoked increase of PP formation. In slices of adult rats, the response to 1S,3R-ACPD was significant, but small, whereas glutamate was effective only in the presence of the glutamate uptake inhibitor L-aspartate-β-hydroxarnate. It is concluded that glutamate activates PLD in rat hippocampus through an AP3-resistant metabotropic receptor. This effect is subject to ontogenetic development, with one important factor being glutamate uptake.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In order to elucidate the regulation of the levels of free choline in the brain, we investigated the influence of chronic and acute choline administration on choline levels in blood, CSF, and brain of the rat and on net movements of choline into and out of the brain as calculated from the arteriovenous differences of choline across the brain. Dietary choline supplementation led to an increase in plasma choline levels of 50% and to an increase in the net release of choline from the brain as compared to a matched group of animals which were kept on a standard diet and exhibited identical arterial plasma levels. Moreover, the choline concentration in the CSF and brain tissue was doubled. In the same rats, the injection of 60 mg/kg choline chloride did not lead to an additional increase of the brain choline levels, whereas in control animals choline injection caused a significant increase; however, this increase in no case surpassed the levels caused by chronic choline supplementation. The net uptake of choline after acute choline administration was strongly reduced in the high-choline group (from 418 to 158 nmol/g). Both diet groups metabolized the bulk (〉96%) of newly taken up choline rapidly. The results indicate that choline supplementation markedly attenuates the rise of free choline in the brain that is observed after acute choline administration. The rapid metabolic choline clearance was not reduced by dietary choline load. We conclude that the brain is protected from excess choline by rapid metabolism, as well as by adaptive, diet-induced changes of the net uptake and release of choline.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...