Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-02-11
    Description: Xenoturbellida and Acoelomorpha are marine worms with contentious ancestry. Both were originally associated with the flatworms (Platyhelminthes), but molecular data have revised their phylogenetic positions, generally linking Xenoturbellida to the deuterostomes and positioning the Acoelomorpha as the most basally branching bilaterian group(s). Recent phylogenomic data suggested that Xenoturbellida and Acoelomorpha are sister taxa and together constitute an early branch of Bilateria. Here we assemble three independent data sets-mitochondrial genes, a phylogenomic data set of 38,330 amino-acid positions and new microRNA (miRNA) complements-and show that the position of Acoelomorpha is strongly affected by a long-branch attraction (LBA) artefact. When we minimize LBA we find consistent support for a position of both acoelomorphs and Xenoturbella within the deuterostomes. The most likely phylogeny links Xenoturbella and Acoelomorpha in a clade we call Xenacoelomorpha. The Xenacoelomorpha is the sister group of the Ambulacraria (hemichordates and echinoderms). We show that analyses of miRNA complements have been affected by character loss in the acoels and that both groups possess one miRNA and the gene Rsb66 otherwise specific to deuterostomes. In addition, Xenoturbella shares one miRNA with the ambulacrarians, and two with the acoels. This phylogeny makes sense of the shared characteristics of Xenoturbellida and Acoelomorpha, such as ciliary ultrastructure and diffuse nervous system, and implies the loss of various deuterostome characters in the Xenacoelomorpha including coelomic cavities, through gut and gill slits.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4025995/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4025995/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Philippe, Herve -- Brinkmann, Henner -- Copley, Richard R -- Moroz, Leonid L -- Nakano, Hiroaki -- Poustka, Albert J -- Wallberg, Andreas -- Peterson, Kevin J -- Telford, Maximilian J -- 075491/Z/04/Wellcome Trust/United Kingdom -- R01 NS039103/NS/NINDS NIH HHS/ -- R21 DA030118/DA/NIDA NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2011 Feb 10;470(7333):255-8. doi: 10.1038/nature09676.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre Robert-Cedergren, Departement de Biochimie, Universite de Montreal, Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21307940" target="_blank"〉PubMed〈/a〉
    Keywords: Anal Canal ; Animals ; Aquatic Organisms/*classification/genetics/physiology ; Bayes Theorem ; Expressed Sequence Tags ; Gills ; MicroRNAs/genetics ; Mitochondrial Proteins/genetics ; *Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-05-23
    Description: The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here we present the draft genome of Pleurobrachia bachei, Pacific sea gooseberry, together with ten other ctenophore transcriptomes, and show that they are remarkably distinct from other animal genomes in their content of neurogenic, immune and developmental genes. Our integrative analyses place Ctenophora as the earliest lineage within Metazoa. This hypothesis is supported by comparative analysis of multiple gene families, including the apparent absence of HOX genes, canonical microRNA machinery, and reduced immune complement in ctenophores. Although two distinct nervous systems are well recognized in ctenophores, many bilaterian neuron-specific genes and genes of 'classical' neurotransmitter pathways either are absent or, if present, are not expressed in neurons. Our metabolomic and physiological data are consistent with the hypothesis that ctenophore neural systems, and possibly muscle specification, evolved independently from those in other animals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337882/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337882/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moroz, Leonid L -- Kocot, Kevin M -- Citarella, Mathew R -- Dosung, Sohn -- Norekian, Tigran P -- Povolotskaya, Inna S -- Grigorenko, Anastasia P -- Dailey, Christopher -- Berezikov, Eugene -- Buckley, Katherine M -- Ptitsyn, Andrey -- Reshetov, Denis -- Mukherjee, Krishanu -- Moroz, Tatiana P -- Bobkova, Yelena -- Yu, Fahong -- Kapitonov, Vladimir V -- Jurka, Jerzy -- Bobkov, Yuri V -- Swore, Joshua J -- Girardo, David O -- Fodor, Alexander -- Gusev, Fedor -- Sanford, Rachel -- Bruders, Rebecca -- Kittler, Ellen -- Mills, Claudia E -- Rast, Jonathan P -- Derelle, Romain -- Solovyev, Victor V -- Kondrashov, Fyodor A -- Swalla, Billie J -- Sweedler, Jonathan V -- Rogaev, Evgeny I -- Halanych, Kenneth M -- Kohn, Andrea B -- 1R01GM097502/GM/NIGMS NIH HHS/ -- 1S10RR027052/RR/NCRR NIH HHS/ -- 55007424/Howard Hughes Medical Institute/ -- 5R21DA030118/DA/NIDA NIH HHS/ -- P30 DA018310/DA/NIDA NIH HHS/ -- R01 AG029360/AG/NIA NIH HHS/ -- R01 GM097502/GM/NIGMS NIH HHS/ -- R01 MH097062/MH/NIMH NIH HHS/ -- R01MH097062/MH/NIMH NIH HHS/ -- R21 DA030118/DA/NIDA NIH HHS/ -- R21 RR025699/RR/NCRR NIH HHS/ -- R21RR025699/RR/NCRR NIH HHS/ -- S10 RR027052/RR/NCRR NIH HHS/ -- England -- Nature. 2014 Jun 5;510(7503):109-14. doi: 10.1038/nature13400. Epub 2014 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, Florida 32080, USA [2] Department of Neuroscience & McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, USA [3] Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington 98250, USA. ; Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849, USA. ; The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, Florida 32080, USA. ; 1] The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, Florida 32080, USA [2] Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington 98250, USA. ; 1] Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain [2] Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain. ; 1] Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, 303 Belmont Street, Worcester, Massachusetts 01604, USA [2] Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Gubkina 3, Moscow 119991, Russia. ; Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA. ; European Research Institute for the Biology of Ageing, University of Groningen Medical Center, Antonius Deusinglaan 1, Building 3226, Room 03.34, 9713 AV Groningen, The Netherlands. ; Department of Medical Biophysics and Department of Immunology, University of Toronto, Sunnybrook Research Institute 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada. ; Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Gubkina 3, Moscow 119991, Russia. ; Department of Neuroscience & McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, USA. ; Genetic Information Research Institute, 1925 Landings Dr., Mountain View, California 94043, USA. ; Program in Molecular Medicine, University of Massachusetts Medical School, 222 Maple Avenue, Shrewsbury, Massachusetts 01545, USA. ; Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington 98250, USA. ; Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK. ; 1] Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain [2] Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain [3] Institucio Catalana de Recerca i Estudis Avancats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain. ; 1] Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, 303 Belmont Street, Worcester, Massachusetts 01604, USA [2] Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Gubkina 3, Moscow 119991, Russia [3] Center for Brain Neurobiology and Neurogenetics and Institute of Cytology and Genetics, RAS, Lavrentyev Avenue, 10, Novosibirsk 630090, Russia [4] Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, 119991 Moscow, Russia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847885" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ctenophora/classification/*genetics/immunology/physiology ; *Evolution, Molecular ; Genes, Developmental ; Genes, Homeobox ; Genome/*genetics ; Mesoderm/metabolism ; Metabolomics ; MicroRNAs ; Molecular Sequence Data ; Muscles/physiology ; *Nervous System/metabolism ; Neurons/metabolism ; Neurotransmitter Agents ; Phylogeny ; Transcriptome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-09-06
    Description: Evolutionary relationships among the eight major lineages of Mollusca have remained unresolved despite their diversity and importance. Previous investigations of molluscan phylogeny, based primarily on nuclear ribosomal gene sequences or morphological data, have been unsuccessful at elucidating these relationships. Recently, phylogenomic studies using dozens to hundreds of genes have greatly improved our understanding of deep animal relationships. However, limited genomic resources spanning molluscan diversity has prevented use of a phylogenomic approach. Here we use transcriptome and genome data from all major lineages (except Monoplacophora) and recover a well-supported topology for Mollusca. Our results strongly support the Aculifera hypothesis placing Polyplacophora (chitons) in a clade with a monophyletic Aplacophora (worm-like molluscs). Additionally, within Conchifera, a sister-taxon relationship between Gastropoda and Bivalvia is supported. This grouping has received little consideration and contains most (〉95%) molluscan species. Thus we propose the node-based name Pleistomollusca. In light of these results, we examined the evolution of morphological characters and found support for advanced cephalization and shells as possibly having multiple origins within Mollusca.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4024475/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4024475/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kocot, Kevin M -- Cannon, Johanna T -- Todt, Christiane -- Citarella, Mathew R -- Kohn, Andrea B -- Meyer, Achim -- Santos, Scott R -- Schander, Christoffer -- Moroz, Leonid L -- Lieb, Bernhard -- Halanych, Kenneth M -- 1R01GM097502/GM/NIGMS NIH HHS/ -- 1R01NS06076/NS/NINDS NIH HHS/ -- R01 GM097502/GM/NIGMS NIH HHS/ -- R01 NS039103/NS/NINDS NIH HHS/ -- R21 DA030118/DA/NIDA NIH HHS/ -- R21 RR025699/RR/NCRR NIH HHS/ -- R21DA030118/DA/NIDA NIH HHS/ -- England -- Nature. 2011 Sep 4;477(7365):452-6. doi: 10.1038/nature10382.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849, USA. kmkocot@auburn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21892190" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bivalvia/anatomy & histology/classification/genetics ; Expressed Sequence Tags ; Gastropoda/anatomy & histology/classification/genetics ; Gene Expression Profiling ; Genes ; Genome/*genetics ; Genomics ; Models, Biological ; Mollusca/anatomy & histology/*classification/*genetics ; *Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-01-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Telford, Maximilian J -- Moroz, Leonid L -- Halanych, Kenneth M -- England -- Nature. 2016 Jan 21;529(7586):286-7. doi: 10.1038/529286a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK. ; Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, Florida 32080, USA, and in the Department of Neuroscience and at the McKnight Brain Institute, University of Florida, Gainesville. ; Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26791714" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-899X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-8221
    Keywords: natural autoantibodies ; human ovarian cancer ; murine ovarian cancer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The interactions between tumor cells and autoantibodies to tumor-associated human ovarian cancer antigen isolated from the plasma of a non-cancer patient are demonstrated using an original model of pseudomucinous murine ovarian carcinoma CaO-1. The use of natural auto-antibodies for active immunotherapy of tumors may be more effective and safe than murine monoclonal antibodies to CA 125, because there will be no reaction to a foreign protein.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...