Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 23 (1984), S. 429-437 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-05
    Description: Pathogens entering the marine environment as pollutants exhibit a spatial signature driven by their transport mechanisms. The sea otter ( Enhydra lutris ), a marine animal which lives much of its life within sight of land, presents a unique opportunity to understand land–sea pathogen transmission. Using a dataset on Toxoplasma gondii prevalence across sea otter range from Alaska to California, we found that the dominant drivers of infection risk vary depending upon the spatial scale of analysis. At the population level, regions with high T. gondii prevalence had higher human population density and a greater proportion of human-dominated land uses, suggesting a strong role for population density of the felid definitive host of this parasite. This relationship persisted when a subset of data were analysed at the individual level: large-scale patterns in sea otter T. gondii infection prevalence were largely explained by individual exposure to areas of high human housing unit density, and other landscape features associated with anthropogenic land use, such as impervious surfaces and cropping land. These results contrast with the small-scale, within-region analysis, in which age, sex and prey choice accounted for most of the variation in infection risk, and terrestrial environmental features provided little variation to help in explaining observed patterns. These results underscore the importance of spatial scale in study design when quantifying both individual-level risk factors and landscape-scale variation in infection risk.
    Keywords: ecology, health and disease and epidemiology
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-17
    Description: Since the year 2000, a concerted campaign against malaria has led to unprecedented levels of intervention coverage across sub-Saharan Africa. Understanding the effect of this control effort is vital to inform future control planning. However, the effect of malaria interventions across the varied epidemiological settings of Africa remains poorly understood owing to the absence of reliable surveillance data and the simplistic approaches underlying current disease estimates. Here we link a large database of malaria field surveys with detailed reconstructions of changing intervention coverage to directly evaluate trends from 2000 to 2015, and quantify the attributable effect of malaria disease control efforts. We found that Plasmodium falciparum infection prevalence in endemic Africa halved and the incidence of clinical disease fell by 40% between 2000 and 2015. We estimate that interventions have averted 663 (542-753 credible interval) million clinical cases since 2000. Insecticide-treated nets, the most widespread intervention, were by far the largest contributor (68% of cases averted). Although still below target levels, current malaria interventions have substantially reduced malaria disease incidence across the continent. Increasing access to these interventions, and maintaining their effectiveness in the face of insecticide and drug resistance, should form a cornerstone of post-2015 control strategies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhatt, S -- Weiss, D J -- Cameron, E -- Bisanzio, D -- Mappin, B -- Dalrymple, U -- Battle, K E -- Moyes, C L -- Henry, A -- Eckhoff, P A -- Wenger, E A -- Briet, O -- Penny, M A -- Smith, T A -- Bennett, A -- Yukich, J -- Eisele, T P -- Griffin, J T -- Fergus, C A -- Lynch, M -- Lindgren, F -- Cohen, J M -- Murray, C L J -- Smith, D L -- Hay, S I -- Cibulskis, R E -- Gething, P W -- 095066/Wellcome Trust/United Kingdom -- G1002284/Medical Research Council/United Kingdom -- England -- Nature. 2015 Oct 8;526(7572):207-11. doi: 10.1038/nature15535. Epub 2015 Sep 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. ; Institute for Disease Modeling, Intellectual Ventures, 1555 132nd Avenue NE, Bellevue, Washington 98005, USA. ; Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland. ; University of Basel, Petersplatz 1, 4001 Basel, Switzerland. ; Malaria Elimination Initiative, University of California San Francisco, 500 Parnassus Avenue, San Francisco, California 94143, USA. ; Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 2200 New Orleans, Louisiana 70112, USA. ; MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK. ; Global Malaria Programme, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland. ; Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK. ; Clinton Health Access Initiative, Boston, Massachusetts 02127, USA. ; Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington 98121, USA. ; Sanaria Institute for Global Health and Tropical Medicine, Rockville, Maryland 20850, USA. ; Fogarty International Center, National Institutes of Health, Bethesda, Maryland 20892-2220, USA. ; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26375008" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-09-11
    Description: Risk of MGUS in relatives of multiple myeloma cases by clinical and tumor characteristics Risk of MGUS in relatives of multiple myeloma cases by clinical and tumor characteristics, Published online: 10 September 2018; doi:10.1038/s41375-018-0246-2 Risk of MGUS in relatives of multiple myeloma cases by clinical and tumor characteristics
    Print ISSN: 0887-6924
    Electronic ISSN: 1476-5551
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-11-14
    Description: The organic anion transporting polypeptides (OATPs) are important membrane proteins that mediate the cellular uptake of drugs and endogenous substances. OATP1A2 is widely distributed in many human tissues that are targeted in drug therapy; defective OATP1A2 leads to altered drug disposition influencing therapeutic outcomes. 5'-AMP-activated protein kinase (AMPK) signaling plays an important role in the pathogenesis of the metabolic syndrome characterized by an increased incidence of type II diabetes and nonalcoholic fatty liver disease. This study investigated the regulatory role of AMPK in OATP1A2 transport function and expression. We found that the treatment of AMPK-specific inhibitor compound C (dorsomorphin dihydrochloride) decreased OATP1A2-mediated uptake of estrone-3-sulfate in a concentration- and time-dependent manner. The impaired OATP1A2 function was associated with a reduced V max [154.6 ± 17.9 pmol x ( μ g x 4 minutes) –1 in compound C–treated cells vs. 413.6 ± 52.5 pmol x ( μ g x 4 minutes) –1 in controls]; the K m was unchanged. The cell-surface expression of OATP1A2 was decreased by compound C treatment, but total cellular expression was unchanged. The impaired cell-surface expression of OATP1A2 was associated with accelerated internalization and impaired targeting/recycling. Silencing of the AMPK α 1-subunit using specific small interfering RNA corroborated the findings with compound C and revealed a role for AMPK in regulating OATP1A2 protein stability. Overall, this study implicated AMPK in the regulation of the function and expression of OATP1A2, which potentially impacts on the disposition of OATP1A2 drug substrates that may be used to treat patients with the metabolic syndrome and other diseases.
    Print ISSN: 0026-895X
    Electronic ISSN: 1521-0111
    Topics: Chemistry and Pharmacology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-03-31
    Description: The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of 'personalized' therapeutic regimens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320027/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320027/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barretina, Jordi -- Caponigro, Giordano -- Stransky, Nicolas -- Venkatesan, Kavitha -- Margolin, Adam A -- Kim, Sungjoon -- Wilson, Christopher J -- Lehar, Joseph -- Kryukov, Gregory V -- Sonkin, Dmitriy -- Reddy, Anupama -- Liu, Manway -- Murray, Lauren -- Berger, Michael F -- Monahan, John E -- Morais, Paula -- Meltzer, Jodi -- Korejwa, Adam -- Jane-Valbuena, Judit -- Mapa, Felipa A -- Thibault, Joseph -- Bric-Furlong, Eva -- Raman, Pichai -- Shipway, Aaron -- Engels, Ingo H -- Cheng, Jill -- Yu, Guoying K -- Yu, Jianjun -- Aspesi, Peter Jr -- de Silva, Melanie -- Jagtap, Kalpana -- Jones, Michael D -- Wang, Li -- Hatton, Charles -- Palescandolo, Emanuele -- Gupta, Supriya -- Mahan, Scott -- Sougnez, Carrie -- Onofrio, Robert C -- Liefeld, Ted -- MacConaill, Laura -- Winckler, Wendy -- Reich, Michael -- Li, Nanxin -- Mesirov, Jill P -- Gabriel, Stacey B -- Getz, Gad -- Ardlie, Kristin -- Chan, Vivien -- Myer, Vic E -- Weber, Barbara L -- Porter, Jeff -- Warmuth, Markus -- Finan, Peter -- Harris, Jennifer L -- Meyerson, Matthew -- Golub, Todd R -- Morrissey, Michael P -- Sellers, William R -- Schlegel, Robert -- Garraway, Levi A -- DP2 OD002750/OD/NIH HHS/ -- DP2 OD002750-01/OD/NIH HHS/ -- R33 CA126674/CA/NCI NIH HHS/ -- R33 CA126674-04/CA/NCI NIH HHS/ -- R33 CA155554/CA/NCI NIH HHS/ -- R33 CA155554-02/CA/NCI NIH HHS/ -- England -- Nature. 2012 Mar 28;483(7391):603-7. doi: 10.1038/nature11003.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22460905" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/pharmacology ; Cell Line, Tumor ; Cell Lineage ; Chromosomes, Human/genetics ; Clinical Trials as Topic/methods ; *Databases, Factual ; Drug Screening Assays, Antitumor/*methods ; *Encyclopedias as Topic ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Genes, ras/genetics ; Genome, Human/genetics ; Genomics ; Humans ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors/metabolism ; *Models, Biological ; Neoplasms/*drug therapy/genetics/metabolism/*pathology ; Pharmacogenetics ; Plasma Cells/cytology/drug effects/metabolism ; Precision Medicine/methods ; Receptor, IGF Type 1/antagonists & inhibitors/metabolism ; Receptors, Aryl Hydrocarbon/genetics/metabolism ; Sequence Analysis, DNA ; Topoisomerase Inhibitors/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-04-02
    Description: AGR2 is an oncogenic endoplasmic reticulum (ER)-resident protein disulfide isomerase. AGR2 protein has a relatively unique property for a chaperone in that it can bind sequence-specifically to a specific peptide motif (TTIYY). A synthetic TTIYY-containing peptide column was used to affinity-purify AGR2 from crude lysates highlighting peptide selectivity in complex mixtures. Hydrogen-deuterium exchange mass spectrometry localized the dominant region in AGR2 that interacts with the TTIYY peptide to within a structural loop from amino acids 131–135 (VDPSL). A peptide binding site consensus of Tx[IL][YF][YF] was developed for AGR2 by measuring its activity against a mutant peptide library. Screening the human proteome for proteins harboring this motif revealed an enrichment in transmembrane proteins and we focused on validating EpCAM as a potential AGR2-interacting protein. AGR2 and EpCAM proteins formed a dose-dependent protein-protein interaction in vitro . Proximity ligation assays demonstrated that endogenous AGR2 and EpCAM protein associate in cells. Introducing a single alanine mutation in EpCAM at Tyr251 attenuated its binding to AGR2 in vitro and in cells. Hydrogen-deuterium exchange mass spectrometry was used to identify a stable binding site for AGR2 on EpCAM, adjacent to the TLIYY motif and surrounding EpCAM's detergent binding site. These data define a dominant site on AGR2 that mediates its specific peptide-binding function. EpCAM forms a model client protein for AGR2 to study how an ER-resident chaperone can dock specifically to a peptide motif and regulate the trafficking a protein destined for the secretory pathway.
    Print ISSN: 1535-9476
    Electronic ISSN: 1535-9484
    Topics: Biology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-02-18
    Description: Intraspecific aggression represents a major source of mortality for many animals and is often experienced alongside the threat of predation. The presence of predators can strongly influence ecological systems both directly by consuming prey and indirectly by altering prey behavior or habitat use. As such, the threat of attack by higher level predators may strongly influence agonistic interactions among conspecifics via nonconsumptive (e.g., behaviorally mediated) predator effects. We sought to investigate these interactions experimentally using larval salamanders ( Ambystoma maculatum ) as prey and dragonfly nymphs ( Anax junius ) as predators. Specifically, we quantified salamander behavioral responses to perceived predation risk (PPR) from dragonfly nymphs and determined the degree to which PPR influenced intraspecific aggression (i.e., intraspecific biting and cannibalism) among prey. This included examining the effects of predator exposure on the magnitude of intraspecific biting (i.e., extent of tail damage) and the resulting change in performance (i.e., burst swim speed). Salamander larvae responded to PPR by reducing activity and feeding, but did not increase refuge use. Predator exposure did not significantly influence overall survival; however, the pattern of survival differed among treatments. Larvae exposed to PPR experienced less tail damage from conspecifics, and maximum burst swim speed declined as tail damage became more extensive. Thus, escape ability was more strongly compromised by intraspecific aggression occurring in the absence of predation risk. We conclude that multitrophic indirect effects may importantly modulate intraspecific aggression and should be considered when evaluating the effects of intraspecific competition. Using a dragonfly nymph (predator)–salamander larvae (prey) system, we experimentally investigate the effect of perceived predation risk on the extent of intraspecific aggression among prey. Larval salamander activity, feeding behavior, and the extent of tail damage from conspecifics were reduced by exposure to predator-treated water. We conclude that multitrophic indirect effects may importantly modulate intraspecific aggression and should be considered when evaluating the effects of intraspecific competition.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley-Blackwell
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Children and Youth Services Review 14 (1992), S. 519-539 
    ISSN: 0190-7409
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Medicine , Education , Psychology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0983
    Keywords: Yeast ; Nuclear ploidy ; Critical size ; Cell proliferation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary For a polyploid series of Saccharomyces cerevisiae strains ranging from haploid to tetraploid we found that the critical cell size required to initiate a new cell division process was directly and linearly proportional to ploidy, but was not influenced by the information at the MAT locus which determines cell type. Therefore, over at least a four-fold range in ploidy the cell cycle machinery which is responsive to growth is modulated by nuclear DNA content.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...