Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-07-24
    Description: Klebsiella pneumoniae is an opportunistic pathogen, and its hypervirulent variants cause serious invasive community-acquired infections. A genomic view of K. pneumoniae NTUH-2044 for the carbohydrate phosphotransferase system (PTS) found a putative fructose PTS, namely, the Frw PTS gene cluster. The deletion mutant and the complemented mutant of frwC (KP1_1992), which encodes the putative fructose-specific enzyme IIC, were constructed, and the phenotypes were characterized. This transmembrane PTS protein is responsible for fructose utilization. frwC deletion can enhance biofilm formation and capsular polysaccharide (CPS) biosynthesis but decreases the growth rate and lethality in mice. frw C expression was repressed in the cyclic AMP receptor protein (CRP) mutant. Electrophoretic mobility shift assay showed that CRP can directly bind to the promoter of frwC . These results indicated that frwC expression is controlled by CRP directly and that such regulation contributes to bacterial growth, CPS synthesis, and the virulence of the crp strain. The findings help elucidate fructose metabolism and the CRP regulatory mechanism in K. pneumoniae .
    Print ISSN: 0019-9567
    Electronic ISSN: 1098-5522
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-02
    Description: Tumor-derived cell-free DNA (cfDNA) has biomarker potential; therefore, this study aimed to identify cfDNA in the aqueous humor (AH) of retinoblastoma eyes and correlate somatic chromosomal copy-number alterations (SCNA) with clinical outcomes, specifically eye salvage. AH was extracted via paracentesis during intravitreal injection of chemotherapy or enucleation. Shallow whole-genome sequencing was performed using isolated cfDNA to assess for highly recurrent SCNAs in retinoblastoma including gain of 1q, 2p, 6p, loss of 13q, 16q, and focal MYCN amplification. Sixty-three clinical specimens of AH from 29 eyes of 26 patients were evaluated; 13 eyes were enucleated and 16 were salvaged (e.g., saved). The presence of detectable SCNAs was 92% in enucleated eyes versus 38% in salvaged eyes ( P = 0.006). Gain of chromosome 6p was the most common SCNA found in 77% of enucleated eyes, compared with 25% of salvaged eyes ( P = 0.0092), and associated with a 10-fold increased odds of enucleation (OR, 10; 95% CI, 1.8–55.6). The median amplitude of 6p gain was 1.47 in enucleated versus 1.07 in salvaged eyes ( P = 0.001). The presence of AH SCNAs was correlated retrospectively with eye salvage. The probability of ocular salvage was higher in eyes without detectable SCNAs in the AH ( P = 0.0028), specifically 6p gain. This is the first study to correlate clinical outcomes with SCNAs in the AH from retinoblastoma eyes, as such these findings indicate that 6p gain in the aqueous humor is a potential prognostic biomarker for poor clinical response to therapy. Implications: The correlation of clinical outcomes and SCNAs in the AH identified in the current study requires prospective studies to validate these finding before SCNAs, like 6p gain, can be used to predict clinical outcomes at diagnosis. Mol Cancer Res; 16(11); 1701–12. ©2018 AACR .
    Print ISSN: 1541-7786
    Electronic ISSN: 1557-3125
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-04-28
    Description: NLRs (nucleotide-binding domain leucine-rich-repeat-containing receptors; NOD-like receptors) are a class of pattern recognition receptor (PRR) that respond to host perturbation from either infectious agents or cellular stress. The function of most NLR family members has not been characterized and their role in instructing adaptive immune responses remains unclear. NLRP10 (also known as PYNOD, NALP10, PAN5 and NOD8) is the only NLR lacking the putative ligand-binding leucine-rich-repeat domain, and has been postulated to be a negative regulator of other NLR members, including NLRP3 (refs 4-6). We did not find evidence that NLRP10 functions through an inflammasome to regulate caspase-1 activity nor that it regulates other inflammasomes. Instead, Nlrp10(-/-) mice had a profound defect in helper T-cell-driven immune responses to a diverse array of adjuvants, including lipopolysaccharide, aluminium hydroxide and complete Freund's adjuvant. Adaptive immunity was impaired in the absence of NLRP10 because of a dendritic cell (DC) intrinsic defect in emigration from inflamed tissues, whereas upregulation of DC costimulatory molecules and chemotaxis to CCR7-dependent and -independent ligands remained intact. The loss of antigen transport to the draining lymph nodes by a subset of migratory DCs resulted in an almost absolute loss in naive CD4(+) T-cell priming, highlighting the critical link between diverse innate immune stimulation, NLRP10 activity and the immune function of mature DCs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340615/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340615/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eisenbarth, Stephanie C -- Williams, Adam -- Colegio, Oscar R -- Meng, Hailong -- Strowig, Till -- Rongvaux, Anthony -- Henao-Mejia, Jorge -- Thaiss, Christoph A -- Joly, Sophie -- Gonzalez, David G -- Xu, Lan -- Zenewicz, Lauren A -- Haberman, Ann M -- Elinav, Eran -- Kleinstein, Steven H -- Sutterwala, Fayyaz S -- Flavell, Richard A -- 1 P50 CA121974/CA/NCI NIH HHS/ -- 5KL2RR024138/RR/NCRR NIH HHS/ -- K08 AI085038/AI/NIAID NIH HHS/ -- K08 AI085038-03/AI/NIAID NIH HHS/ -- K08AI085038/AI/NIAID NIH HHS/ -- P30AR053495/AR/NIAMS NIH HHS/ -- R01 AI087630/AI/NIAID NIH HHS/ -- R01AI087630/AI/NIAID NIH HHS/ -- T32HL007974/HL/NHLBI NIH HHS/ -- UL1 RR024139/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Apr 25;484(7395):510-3. doi: 10.1038/nature11012.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22538615" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptive Immunity/*immunology ; Adjuvants, Immunologic ; Animals ; Antigens/immunology ; Apoptosis Regulatory Proteins/deficiency/genetics/immunology/*metabolism ; Caspase 1 ; Cell Movement ; Chemokines/immunology ; Dendritic Cells/cytology/*immunology/metabolism ; Gene Deletion ; Inflammasomes ; Ligands ; Lymph Nodes/immunology ; Mice ; Mice, Inbred BALB C ; T-Lymphocytes/immunology ; T-Lymphocytes, Helper-Inducer/immunology ; Vaccines/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-08-28
    Description: Cortical-feedback projections to primary sensory areas terminate most heavily in layer 1 (L1) of the neocortex, where they make synapses with tuft dendrites of pyramidal neurons. L1 input is thought to provide 'contextual' information, but the signals transmitted by L1 feedback remain uncharacterized. In the rodent somatosensory system, the spatially diffuse feedback projection from vibrissal motor cortex (vM1) to vibrissal somatosensory cortex (vS1, also known as the barrel cortex) may allow whisker touch to be interpreted in the context of whisker position to compute object location. When mice palpate objects with their whiskers to localize object features, whisker touch excites vS1 and later vM1 in a somatotopic manner. Here we use axonal calcium imaging to track activity in vM1--〉vS1 afferents in L1 of the barrel cortex while mice performed whisker-dependent object localization. Spatially intermingled individual axons represent whisker movements, touch and other behavioural features. In a subpopulation of axons, activity depends on object location and persists for seconds after touch. Neurons in the barrel cortex thus have information to integrate movements and touches of multiple whiskers over time, key components of object identification and navigation by active touch.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443316/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443316/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petreanu, Leopoldo -- Gutnisky, Diego A -- Huber, Daniel -- Xu, Ning-long -- O'Connor, Dan H -- Tian, Lin -- Looger, Loren -- Svoboda, Karel -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Sep 13;489(7415):299-303. doi: 10.1038/nature11321.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22922646" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/metabolism ; Calcium Signaling ; Feedback, Physiological ; Male ; Mice ; Mice, Inbred C57BL ; Motor Cortex/cytology/*physiology ; Motor Neurons/metabolism ; Movement/physiology ; *Neural Pathways ; Physical Stimulation ; Somatosensory Cortex/cytology/*physiology ; Touch/*physiology ; Vibrissae/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-06-07
    Description: After light-induced nuclear translocation, phytochrome photoreceptors interact with and induce rapid phosphorylation and degradation of basic helix-loop-helix transcription factors, such as PHYTOCHROME-INTERACTING FACTOR 3 (PIF3), to regulate gene expression. Concomitantly, this interaction triggers feedback reduction of phytochrome B (phyB) levels. Light-induced phosphorylation of PIF3 is necessary for the degradation of both proteins. We report that this PIF3 phosphorylation induces, and is necessary for, recruitment of LRB [Light-Response Bric-a-Brack/Tramtrack/Broad (BTB)] E3 ubiquitin ligases to the PIF3-phyB complex. The recruited LRBs promote concurrent polyubiqutination and degradation of both PIF3 and phyB in vivo. These data reveal a linked signal-transmission and attenuation mechanism involving mutually assured destruction of the receptor and its immediate signaling partner.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414656/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414656/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ni, Weimin -- Xu, Shou-Ling -- Tepperman, James M -- Stanley, David J -- Maltby, Dave A -- Gross, John D -- Burlingame, Alma L -- Wang, Zhi-Yong -- Quail, Peter H -- 2R01 GM-047475/GM/NIGMS NIH HHS/ -- 5R01GM066258/GM/NIGMS NIH HHS/ -- 8P41GM103481/GM/NIGMS NIH HHS/ -- P41 GM103481/GM/NIGMS NIH HHS/ -- P50 GM082250/GM/NIGMS NIH HHS/ -- R01 GM047475/GM/NIGMS NIH HHS/ -- R01 GM066258/GM/NIGMS NIH HHS/ -- T32 GM008284/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jun 6;344(6188):1160-4. doi: 10.1126/science.1250778.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA. Plant Gene Expression Center, Agriculture Research Service (ARS), U.S. Department of Agriculture (USDA), Albany, CA 94710, USA. ; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA. Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA. ; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA. ; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA. ; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA. Plant Gene Expression Center, Agriculture Research Service (ARS), U.S. Department of Agriculture (USDA), Albany, CA 94710, USA. quail@berkeley.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24904166" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Arabidopsis/genetics/*growth & development/metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Basic Helix-Loop-Helix Transcription Factors/genetics/*metabolism ; Cell Nucleus/metabolism ; Cullin Proteins/*metabolism ; Gene Expression Regulation, Plant ; HeLa Cells ; Humans ; *Light Signal Transduction ; Nuclear Proteins/genetics/metabolism ; Phosphorylation ; Phytochrome B/*metabolism ; Polyubiquitin/metabolism ; Proteolysis ; *Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-09-06
    Description: Sperm and eggs carry distinctive epigenetic modifications that are adjusted by reprogramming after fertilization. The paternal genome in a zygote undergoes active DNA demethylation before the first mitosis. The biological significance and mechanisms of this paternal epigenome remodelling have remained unclear. Here we report that, within mouse zygotes, oxidation of 5-methylcytosine (5mC) occurs on the paternal genome, changing 5mC into 5-hydroxymethylcytosine (5hmC). Furthermore, we demonstrate that the dioxygenase Tet3 (ref. 5) is enriched specifically in the male pronucleus. In Tet3-deficient zygotes from conditional knockout mice, paternal-genome conversion of 5mC into 5hmC fails to occur and the level of 5mC remains constant. Deficiency of Tet3 also impedes the demethylation process of the paternal Oct4 and Nanog genes and delays the subsequent activation of a paternally derived Oct4 transgene in early embryos. Female mice depleted of Tet3 in the germ line show severely reduced fecundity and their heterozygous mutant offspring lacking maternal Tet3 suffer an increased incidence of developmental failure. Oocytes lacking Tet3 also seem to have a reduced ability to reprogram the injected nuclei from somatic cells. Therefore, Tet3-mediated DNA hydroxylation is involved in epigenetic reprogramming of the zygotic paternal DNA following natural fertilization and may also contribute to somatic cell nuclear reprogramming during animal cloning.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, Tian-Peng -- Guo, Fan -- Yang, Hui -- Wu, Hai-Ping -- Xu, Gui-Fang -- Liu, Wei -- Xie, Zhi-Guo -- Shi, Linyu -- He, Xinyi -- Jin, Seung-gi -- Iqbal, Khursheed -- Shi, Yujiang Geno -- Deng, Zixin -- Szabo, Piroska E -- Pfeifer, Gerd P -- Li, Jinsong -- Xu, Guo-Liang -- GM078458/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Sep 4;477(7366):606-10. doi: 10.1038/nature10443.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21892189" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Alleles ; Animals ; *Cellular Reprogramming ; Cytosine/analogs & derivatives/metabolism ; DNA/chemistry/genetics/metabolism ; DNA Methylation/genetics ; DNA-Binding Proteins/deficiency/genetics/*metabolism ; Dioxygenases/genetics/*metabolism ; Embryo, Mammalian/embryology/metabolism ; Embryonic Development ; *Epigenesis, Genetic ; Female ; Fertility/genetics ; Gene Expression Regulation, Developmental ; Germ Cells/metabolism ; Male ; Mice ; Octamer Transcription Factor-3/genetics ; Oocytes/cytology/*enzymology/*metabolism ; Oxidation-Reduction ; Proto-Oncogene Proteins/deficiency/genetics/*metabolism ; Zygote/cytology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-08-19
    Description: T-cell acute lymphoblastic leukaemia (T-ALL) is a haematological malignancy with a dismal overall prognosis, including a relapse rate of up to 25%, mainly because of the lack of non-cytotoxic targeted therapy options. Drugs that target the function of key epigenetic factors have been approved in the context of haematopoietic disorders, and mutations that affect chromatin modulators in a variety of leukaemias have recently been identified; however, 'epigenetic' drugs are not currently used for T-ALL treatment. Recently, we described that the polycomb repressive complex 2 (PRC2) has a tumour-suppressor role in T-ALL. Here we delineated the role of the histone 3 lysine 27 (H3K27) demethylases JMJD3 and UTX in T-ALL. We show that JMJD3 is essential for the initiation and maintenance of T-ALL, as it controls important oncogenic gene targets by modulating H3K27 methylation. By contrast, we found that UTX functions as a tumour suppressor and is frequently genetically inactivated in T-ALL. Moreover, we demonstrated that the small molecule inhibitor GSKJ4 (ref. 5) affects T-ALL growth, by targeting JMJD3 activity. These findings show that two proteins with a similar enzymatic function can have opposing roles in the context of the same disease, paving the way for treating haematopoietic malignancies with a new category of epigenetic inhibitors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209203/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209203/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ntziachristos, Panagiotis -- Tsirigos, Aristotelis -- Welstead, G Grant -- Trimarchi, Thomas -- Bakogianni, Sofia -- Xu, Luyao -- Loizou, Evangelia -- Holmfeldt, Linda -- Strikoudis, Alexandros -- King, Bryan -- Mullenders, Jasper -- Becksfort, Jared -- Nedjic, Jelena -- Paietta, Elisabeth -- Tallman, Martin S -- Rowe, Jacob M -- Tonon, Giovanni -- Satoh, Takashi -- Kruidenier, Laurens -- Prinjha, Rab -- Akira, Shizuo -- Van Vlierberghe, Pieter -- Ferrando, Adolfo A -- Jaenisch, Rudolf -- Mullighan, Charles G -- Aifantis, Iannis -- 1R01CA105129/CA/NCI NIH HHS/ -- 1R01CA133379/CA/NCI NIH HHS/ -- 1R01CA149655/CA/NCI NIH HHS/ -- 5 T32 CA009161-37/CA/NCI NIH HHS/ -- 5P30CA16087-31/CA/NCI NIH HHS/ -- 5R01CA169784/CA/NCI NIH HHS/ -- 5R01CA173636/CA/NCI NIH HHS/ -- K99 CA188293/CA/NCI NIH HHS/ -- K99CA188293/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- P30 CA016087/CA/NCI NIH HHS/ -- P30 CA016087-30/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- R01 CA105129/CA/NCI NIH HHS/ -- R01 CA133379/CA/NCI NIH HHS/ -- R01 CA149655/CA/NCI NIH HHS/ -- R01 CA173636/CA/NCI NIH HHS/ -- R01CA120196/CA/NCI NIH HHS/ -- R37 HD045022/HD/NICHD NIH HHS/ -- R37-HD04502/HD/NICHD NIH HHS/ -- U10 CA180820/CA/NCI NIH HHS/ -- U10 CA180827/CA/NCI NIH HHS/ -- U10 CA21115/CA/NCI NIH HHS/ -- U24 CA114737/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 23;514(7523):513-7. doi: 10.1038/nature13605. Epub 2014 Aug 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, New York 10016, USA [2] NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, New York 10016, USA [3]. ; 1] Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, New York 10016, USA [2] Center for Health Informatics and Bioinformatics, NYU School of Medicine, New York, New York 10016, USA [3]. ; 1] Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3]. ; 1] Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, New York 10016, USA [2] NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, New York 10016, USA. ; Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA. ; Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Montefiore Medical Center North, Bronx, New York, New York 10467, USA. ; Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; 1] Technion, Israel Institute of Technology, Haifa 31096, Israel [2] Shaare Zedek Medical Center, Jerusalem 9103102, Israel. ; Functional Genomics of Cancer Unit, Division of Molecular Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy. ; 1] Laboratory of Host Defense, WPI Immunology Frontier Research Center (WPI IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan [2] Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1Yamada-oka, Suita, Osaka 565-0871, Japan. ; Epinova DPU, Immuno-Inflammation Therapy Area, GlaxoSmithKline R&D, Medicines Research Centre, GunnelsWood Road, Stevenage SG1 2NY, UK. ; 1] Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA [2] Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium. ; 1] Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA [2] Department of Pathology, Columbia University Medical Center, New York, New York 10032, USA [3] Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA. ; 1] Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25132549" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzazepines/pharmacology ; Epigenesis, Genetic/drug effects ; Histone Demethylases/genetics/*metabolism ; Histones/chemistry/metabolism ; Jumonji Domain-Containing Histone Demethylases/antagonists & ; inhibitors/*metabolism ; Lysine/metabolism ; Methylation/drug effects ; Mice ; Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug ; therapy/*enzymology/genetics/pathology ; Pyrimidines/pharmacology ; Tumor Suppressor Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-07-01
    Description: DNA methylation at selective cytosine residues (5-methylcytosine (5mC)) and their removal by TET-mediated DNA demethylation are critical for setting up pluripotent states in early embryonic development. TET enzymes successively convert 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), with 5fC and 5caC subject to removal by thymine DNA glycosylase (TDG) in conjunction with base excision repair. Early reports indicate that 5fC and 5caC could be stably detected on enhancers, promoters and gene bodies, with distinct effects on gene expression, but the mechanisms have remained elusive. Here we determined the X-ray crystal structure of yeast elongating RNA polymerase II (Pol II) in complex with a DNA template containing oxidized 5mCs, revealing specific hydrogen bonds between the 5-carboxyl group of 5caC and the conserved epi-DNA recognition loop in the polymerase. This causes a positional shift for incoming nucleoside 5'-triphosphate (NTP), thus compromising nucleotide addition. To test the implication of this structural insight in vivo, we determined the global effect of increased 5fC/5caC levels on transcription, finding that such DNA modifications indeed retarded Pol II elongation on gene bodies. These results demonstrate the functional impact of oxidized 5mCs on gene expression and suggest a novel role for Pol II as a specific and direct epigenetic sensor during transcription elongation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521995/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521995/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Lanfeng -- Zhou, Yu -- Xu, Liang -- Xiao, Rui -- Lu, Xingyu -- Chen, Liang -- Chong, Jenny -- Li, Hairi -- He, Chuan -- Fu, Xiang-Dong -- Wang, Dong -- GM052872/GM/NIGMS NIH HHS/ -- GM102362/GM/NIGMS NIH HHS/ -- HG004659/HG/NHGRI NIH HHS/ -- HG006827/HG/NHGRI NIH HHS/ -- R01 GM052872/GM/NIGMS NIH HHS/ -- R01 GM102362/GM/NIGMS NIH HHS/ -- R01 HG004659/HG/NHGRI NIH HHS/ -- R01 HG006827/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 30;523(7562):621-5. doi: 10.1038/nature14482. Epub 2015 Jun 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Department of Cellular and Molecular Medicine, School of Medicine, The University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26123024" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Cytosine/*analogs & derivatives/chemistry/metabolism ; DNA Methylation ; DNA Repair ; Epigenesis, Genetic ; Hydrogen Bonding ; Kinetics ; RNA Polymerase II/*chemistry/*metabolism ; Saccharomyces cerevisiae/*enzymology/genetics/metabolism ; Substrate Specificity ; Templates, Genetic ; Thymine DNA Glycosylase/metabolism ; *Transcription Elongation, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-11-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eisenbarth, Stephanie C -- Williams, Adam -- Colegio, Oscar R -- Meng, Hailong -- Strowig, Till -- Rongvaux, Anthony -- Henao-Mejia, Jorge -- Thaiss, Christoph A -- Joly, Sophie -- Gonzalez, David G -- Xu, Lan -- Zenewicz, Lauren A -- Haberman, Ann M -- Elinav, Eran -- Kleinstein, Steven H -- Sutterwala, Fayyaz S -- Flavell, Richard A -- England -- Nature. 2016 Feb 25;530(7591):504. doi: 10.1038/nature16074. Epub 2015 Nov 25.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26605525" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-07-13
    Keywords: Multiple Myeloma, Lymphoid Neoplasia
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...