Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Gene 24 (1983), S. 125-129 
    ISSN: 0378-1119
    Keywords: Insertion elements ; chemical and dideoxy sequencing ; inverted repeated sequences ; kanamycin resistance ; pBR322 plasmid ; transposons
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Helicobacter pylori synthesizes a heat-shock protein of the GroES class. The gene encoding this protein (heat-shock protein A, HspA) was recently cloned and it was shown to be unique in structure. H. pylori HspA consists of two domains: the N-terminal domain (domain A) homologous with other GroES proteins, and a C-terminal domain (domain B) corresponding to 27 additional residues resembling a metal-binding domain. Various recombinant proteins consisting of the entire HspA polypeptide, the A domain, or the B domain were produced independently as proteins fused to maltose-binding protein (MBP). Comparison of the divalent cation binding properties of the various MBP and MBP-fused proteins allowed us to conclude that HspA binds nickel ions by means of its C-terminal domain. HspA exhibited a high and specific affinity for nickel ions in comparison with its affinity for other divalent cations (copper, zinc, cobalt). Equilibrium dialysis experiments revealed that MBP–HspA binds nickel ions with an apparent dissociation constant (Kd) of 1.8 μM and a stoichiometry of 1.9 ions per molecule. The analysis of the deduced HspA amino acid sequences encoded by 35 independent clinical isolates demonstrated the existence of two molecular variants of HspA, i.e. a major and a minor variant present in 89% and 11% of strains, respectively. The two variants differed from each other by the simultaneous substitution of seven amino acids within the B domain, whilst the A domain was highly conserved amongst all the HspA proteins (99–100% identity). On the basis of serological studies, the highly conserved A domain of HspA was found to be the immunodominant domain. Functional complementation experiments were performed to test the properties of the two HspA variants. When co-expressed together with the H. pylori urease gene cluster in Escherichia coli cells, the two HspA variant-encoding genes led to a fourfold increase in urease activity, demonstrating that HspA in H. pylori has a specialized function with regard to the nickel metalloenzyme urease.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The afa-3 gene cluster determines the formation of an afimbrial adhesive sheath that is expressed by uropathogenic as well as diarrhoea-associated Escherichia coli strains. It contains six genes (afaA–afaF ), among which the afaE3 gene is known to code for the structural AfaE-III adhesin (previously designated AFA-III), whereas no role has yet been identified for the afaD gene product. The afa-3 gene cluster is closely related to the daa operon that codes for an adhesin, the F1845 adhesin, which is highly related to the AfaE-III adhesin; however, unlike the AfaE-III adhesin, F1845 is a fimbrial adhesin. Reported in this work is the construction of chimeras between the afa-3 and daa operons. Analyses of the phenotypes conferred by these afa-3/daa chimeric clusters allowed us to conclude that the biogenesis of a fimbrial or an afimbrial adhesin is fully determined by the amino acid sequence of the AfaE-III and F1845 adhesins. Moreover, the role of the AfaD product in the biosynthesis of the afimbrial sheath was assessed by immunogold and immunofluorescence experiments. The AfaD and the AfaE-III products were purified and used to raise rabbit and mouse antisera. Similar to AfaE-III, AfaD was found to be a surface-exposed protein as well as an adhesin; both AfaD and AfaE-III are concomittantly expressed by the bacterial cell. These results demonstrate, for the first time, that the afimbrial adhesive sheath expressed by pathogenic E. coli is composed of two adhesins.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Campylobacter fetus utilizes paracrystalline surface (S-) layer proteins that confer complement resistance and that undergo antigenic variation to facilitate persistent mucosal colonization in ungulates. C. fetus possesses multiple homologues of sapA, each of which encode full-length S-layer proteins. Disruption of sapA by a gene targeting method (insertion of kanamycin (km) resistance) caused the loss of C. fetus cells bearing full-length S-layer proteins and their replacement by cells bearing a 50 kDa truncated protein that was not exported to the cell surface. After incubation of the mutants with serum, the survival rate was approximately 2 × 10-2. Immunoblots of survivors showed that phenotypic reversion involving high-level production of full-length (98, 127 or 149 kDa) S-layer proteins had occurred. Revertants were serum resistant but caused approximately 10-fold less bacteraemia in orally challenged mice than did the wild-type strain. Southern hybridizations of the revertants showed rearrangement of sapA homologues and retention of the km marker. These results indicate that there exists high-frequency generation of C. fetus sapA antigenic variants, and that intracellular mechanisms acting at the level of DNA reciprocal recombination play key roles in this phenomenon.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Salmonella ordonez strain BM2000 carries kanamycin (Km), ampicillin (Ap), spectinomycin (Sp), chloramphenicol (Cm), tetracyline (Tc), and sulfonamide (Su) resistance and production of colicin Ib (Cib). The Km and Cib characters were carried by a 97kb IncI1 plasmid (pIP565). In addition to the Km and Cib traits, all or part of the other antibiotic resistance (R) determinants could be transferred by conjugation from S. ordonez to Escherichia coli where all the acquired characters are borne by an IncI1 plasmid, designated complete or partial composite plasmid respectively. DNA from pIP565 and composite plasmids and total DNA from strain BM2000 were studied by agarose and polyacrylamide gel electrophoresis following digestion with restriction endonucleases, and by Southern hybridization. These comparative analyses enabled us a) to show that acquisition by pIP565 of resistance to all or some of the antibiotics was due to the insertion of a single DNA fragment into the receptor plasmid; b) to detect two types of composite plasmids with regard to the specificity of insertion into pIP565 and the mapping of the inserts; c) to demonstrate that the ApCmSpSuTc resistance determinants were integrated into S. ordonez BM2000 chromosomal DNA; d) to map the restriction fragments of the translocatable sequence integrated into strain BM2000 chromosome or into pIP565. The results obtained suggest that two distinct mechanisms for the translocation of the R determinants coexist in S. ordonez BM2000. Recombination between two of the four directly repeated copies of the IS-like sequence (IS1522) present in S. ordonez chromosome leads to the circularisation of all or part of the AmCmSpSuTc R determinants and is followed by either 1) a second recombination with the copy of IS1522 in pIP565 (Type I composite plasmids), or 2) transposition of precise groups of characters in various sites of pIP565 (Type II composite plasmids).
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have shown that the IS15 element, first detected in Salmonella ordonez and previously designated IS1522 (Labigne-Roussel et al. 1981), could transpose, with an approximate frequency of 5x10-5, to various sites of different replicons in an Escherichia coli host deficient for general homologous recombination. Physical mapping with restriction endonucleases of this 1,500 base pairs (bp) transposable module indicated the presence of two, possibly contiguous, directly repeated internal sequences, at least 480 bp in size. IS15 could generate in vivo, by intramolecular recombination between the two direct repeats, IS15-Δ, which is 830 bp in size. The reverse transition, IS15-Δ to IS15, was not observed. The two related structural forms of IS15 were detected, by Southern hybridization, on plasmids belonging to various incompatibility groups (Inc6-C, I1, 7-M, and Y) isolated from phylogenetically remote pathogenic bacterial genera (Escherichia coli, Salmonella panama, Enterobacter cloacae, and Acinetobacter calcoaceticus). Whereas IS15 could promote its own transposition and transposition of DNA fragments it flanked, IS15-Δ resulting from the 670 bp ‘clean’ deletion and representing the most common natural deletion derivative could only induce replicon fusion. It appears, therefore, that the two structural configurations of IS15 have evolved to play, by transposition, distinct and complementary roles in bacterial evolution.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have isolated plasmid pIP112 (IncI1) from Salmonella panama and characterized by restriction endonucleases analysis and by recombinant DNA techniques a transposable element designated Tn1525. This 4.44 kilobase (kb) transposon confers resistance to kanamycin by synthesis of an aminoglycoside phosphotransferase (3′) (5″) type I and contains two copies of IS15 (1.5 kb) in direct orientation. The modular organisation of Tn1525 offers the possibility for intramolecular homologous recombination between the two terminal direct repeats and thus accounts for the in vivo structural lability of plasmid pIP112: instability of kanamycin resistance and tandem amplification of the kanamycin determinant. Other transposons mediating resistance to kanamycin by the same enzymatic mechanism were analysed by agarose and polyacrylamide gel electrophoresis, following digestion with restriction endonucleases, and by Southern hybridizations. These comparisons indicate that, although the structural genes for the phosphotransferases are homologous, Tn1525 differs from Tn903 and Tn2350 and is closely related but distinct from Tn6. Using the same techniques Tn1525 was detected on plasmids belonging to different incompatibility groups and originating from various species of Gram-negative clinical isolates. These results indicate that Tn1525 is representative of a new family of class I composite transposons already spread in diverse pathogenic bacterial genera.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Plasmid 8 (1982), S. 215-231 
    ISSN: 0147-619X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] With the availability of complete DNA sequences for many prokaryotic and eukaryotic genomes, and soon for the human genome itself, it is important to develop reliable proteome-wide approaches for a better understanding of protein function. As elementary constituents of cellular protein ...
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract: A total of 160 Escherichia coli positive for F165 fimbrial antigen and isolated from diarrheic and septicemic animals, were examined for the presence of the pap, afa, and sfa/foc operons or related nucleotide sequences using colony hybridization. Most isolates shared DNA sequences with the pap operon sequences alone or in association with afa or sfa. Thus, our results indicate that F165-positive E. coli from diseased animals share DNA sequences with operons coding for adhesins important in human extra-intestinal disease and that multiple adhesin systems are often found in single isolates. However, 20% of the F165-positive isolates did no show any homology with the probes representing the three adhesin systems, suggesting that one of the operons responsible for F165 production could be different from the pap, sfa/foc, and afa operons.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...