Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: CANCER ; DISTINCT ; prognosis ; PROGRESSION ; chemotherapy ; ABERRATIONS ; MUTATIONS ; CHILDREN ; ADOLESCENTS ; INTRATUMOR HETEROGENEITY
    Abstract: BACKGROUND: Recurrent medulloblastoma is a therapeutic challenge because it is almost always fatal. Studies have confirmed that medulloblastoma consists of at least four distinct subgroups. We sought to delineate subgroup-specific differences in medulloblastoma recurrence patterns. METHODS: We retrospectively identified a discovery cohort of all recurrent medulloblastomas at the Hospital for Sick Children (Toronto, ON, Canada) from 1994 to 2012 (cohort 1), and established molecular subgroups using a nanoString-based assay on formalin-fixed paraffin-embedded tissues or frozen tissue. The anatomical site of recurrence (local tumour bed or leptomeningeal metastasis), time to recurrence, and survival after recurrence were assessed in a subgroup-specific manner. Two independent, non-overlapping cohorts (cohort 2: samples from patients with recurrent medulloblastomas from 13 centres worldwide, obtained between 1991 and 2012; cohort 3: samples from patients with recurrent medulloblastoma obtained at the NN Burdenko Neurosurgical Institute [Moscow, Russia] between 1994 and 2011) were analysed to confirm and validate observations. When possible, molecular subgrouping was done on tissue obtained from both the initial surgery and at recurrence. RESULTS: Cohort 1 consisted of 30 patients with recurrent medulloblastomas; nine with local recurrences, and 21 with metastatic recurrences. Cohort 2 consisted of 77 patients and cohort 3 of 96 patients with recurrent medulloblastoma. Subgroup affiliation remained stable at recurrence in all 34 cases with available matched primary and recurrent pairs (five pairs from cohort 1 and 29 pairs from cohort 2 [15 SHH, five group 3, 14 group 4]). This finding was validated in 17 pairs from cohort 3. When analysed in a subgroup-specific manner, local recurrences in cohort 1 were more frequent in SHH tumours (eight of nine [89%]) and metastatic recurrences were more common in group 3 and group 4 tumours (17 of 20 [85%] with one WNT, p=0.0014, local vs metastatic recurrence, SHH vs group 3 vs group 4). The subgroup-specific location of recurrence was confirmed in cohort 2 (p=0.0013 for local vs metastatic recurrence, SHH vs group 3 vs group 4,), and cohort 3 (p〈0.0001). Treatment with craniospinal irradiation at diagnosis was not significantly associated with the anatomical pattern of recurrence. Survival after recurrence was significantly longer in patients with group 4 tumours in cohort 1 (p=0.013) than with other subgroups, which was confirmed in cohort 2 (p=0.0075), but not cohort 3 (p=0.70). INTERPRETATION: Medulloblastoma does not change subgroup at the time of recurrence, reinforcing the stability of the four main medulloblastoma subgroups. Significant differences in the location and timing of recurrence across medulloblastoma subgroups have potential treatment ramifications. Specifically, intensified local (posterior fossa) therapy should be tested in the initial treatment of patients with SHH tumours. Refinement of therapy for patients with group 3 or group 4 tumours should focus on metastases. FUNDING: Canadian Institutes of Health Research, National Institutes of Health, Pediatric Brain Tumor Foundation, Garron Family Chair in Childhood Cancer Research at The Hospital for Sick Children and The University of Toronto.
    Type of Publication: Journal article published
    PubMed ID: 24140199
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: GENES ; MOUSE ; SUBGROUPS ; GLIOBLASTOMA ; INTRINSIC PONTINE GLIOMAS ; HISTONE H3.3 ; FIBRODYSPLASIA OSSIFICANS PROGRESSIVA ; BMP RECEPTOR ; I RECEPTOR ; ALK2
    Abstract: Pediatric midline high-grade astrocytomas (mHGAs) are incurable with few treatment targets identified. Most tumors harbor mutations encoding p.Lys27Met in histone H3 variants. In 40 treatment-naive mHGAs, 39 analyzed by whole-exome sequencing, we find additional somatic mutations specific to tumor location. Gain-of-function mutations in ACVR1 occur in tumors of the pons in conjunction with histone H3.1 p.Lys27Met substitution, whereas FGFR1 mutations or fusions occur in thalamic tumors associated with histone H3.3 p.Lys27Met substitution. Hyperactivation of the bone morphogenetic protein (BMP)-ACVR1 developmental pathway in mHGAs harboring ACVR1 mutations led to increased levels of phosphorylated SMAD1, SMAD5 and SMAD8 and upregulation of BMP downstream early-response genes in tumor cells. Global DNA methylation profiles were significantly associated with the p.Lys27Met alteration, regardless of the mutant histone H3 variant and irrespective of tumor location, supporting the role of this substitution in driving the epigenetic phenotype. This work considerably expands the number of potential treatment targets and further justifies pretreatment biopsy in pediatric mHGA as a means to orient therapeutic efforts in this disease.
    Type of Publication: Journal article published
    PubMed ID: 24705250
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: EXPRESSION ; TUMORS ; medulloblastoma ; SOMATIC MUTATIONS ; DISTINCT SUBGROUPS ; PEDIATRIC GLIOBLASTOMA ; INTRINSIC PONTINE GLIOMA ; ACTIVATING ACVR1 MUTATIONS ; K27M MUTATION ; H3F3A
    Abstract: Studies in pediatric high-grade astrocytomas (HGA) by our group and others have uncovered recurrent somatic mutations affecting highly conserved residues in histone 3 (H3) variants. One of these mutations leads to analogous p.Lys27Met (K27M) mutations in both H3.3 and H3.1 variants, is associated with rapid fatal outcome, and occurs specifically in HGA of the midline in children and young adults. This includes diffuse intrinsic pontine gliomas (80 %) and thalamic or spinal HGA (〉90 %), which are surgically challenging locations with often limited tumor material available and critical need for specific histopathological markers. Here, we analyzed formalin-fixed paraffin-embedded tissues from 143 pediatric HGA and 297 other primary brain tumors or normal brain. Immunohistochemical staining for H3K27M was compared to tumor genotype, and also compared to H3 tri-methylated lysine 27 (H3K27me3) staining, previously shown to be drastically decreased in samples carrying this mutation. There was a 100 % concordance between genotype and immunohistochemical analysis of H3K27M in tumor samples. Mutant H3K27M was expressed in the majority of tumor cells, indicating limited intra-tumor heterogeneity for this specific mutation within the limits of our dataset. Both H3.1 and H3.3K27M mutants were recognized by this antibody while non-neoplastic elements, such as endothelial and vascular smooth muscle cells or lymphocytes, did not stain. H3K27me3 immunoreactivity was largely mutually exclusive with H3K27M positivity. These results demonstrate that mutant H3K27M can be specifically identified with high specificity and sensitivity using an H3K27M antibody and immunohistochemistry. Use of this antibody in the clinical setting will prove very useful for diagnosis, especially in the context of small biopsies in challenging midline tumors and will help orient care in the context of the extremely poor prognosis associated with this mutation.
    Type of Publication: Journal article published
    PubMed ID: 25200321
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Abstract: For the past decade, it has been recognized that pediatric low-grade gliomas (LGGs) and glial-neuronal tumors carry distinct molecular alterations with resultant aberrant intracellular signaling in the Ras-mitogen-activated protein kinase pathway. The conclusions and recommendations of a consensus conference of how best to integrate the growing body of molecular genetic information into tumor classifications and, more importantly, for future treatment of pediatric LGGs are summarized here. There is uniform agreement that molecular characterization must be incorporated into classification and is increasingly critical for appropriate management. Molecular-targeted therapies should be integrated expeditiously, but also carefully into the management of these tumors and success measured not only by radiographic responses or stability, but also by functional outcomes. These trials need to be carried out with the caveat that the long-term impact of molecularly targeted therapy on the developing nervous system, especially with long duration treatment, is essentially unknown.
    Type of Publication: Journal article published
    PubMed ID: 27683733
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: SIGNAL-TRANSDUCTION ; ACUTE MYELOID-LEUKEMIA ; NEURAL STEM-CELLS ; DISTINCT SUBGROUPS ; ONCOGENIC MUTATIONS ; MAPK PATHWAY ACTIVATION ; HUMAN GLIOBLASTOMA ; NOONAN-SYNDROME ; MUTATIONAL PROCESSES ; CANCER GENOMES
    Abstract: Pilocytic astrocytoma, the most common childhood brain tumor, is typically associated with mitogen-activated protein kinase (MAPK) pathway alterations. Surgically inaccessible midline tumors are therapeutically challenging, showing sustained tendency for progression and often becoming a chronic disease with substantial morbidities. Here we describe whole-genome sequencing of 96 pilocytic astrocytomas, with matched RNA sequencing (n = 73), conducted by the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. We identified recurrent activating mutations in FGFR1 and PTPN11 and new NTRK2 fusion genes in non-cerebellar tumors. New BRAF-activating changes were also observed. MAPK pathway alterations affected all tumors analyzed, with no other significant mutations identified, indicating that pilocytic astrocytoma is predominantly a single-pathway disease. Notably, we identified the same FGFR1 mutations in a subset of H3F3A-mutated pediatric glioblastoma with additional alterations in the NF1 gene. Our findings thus identify new potential therapeutic targets in distinct subsets of pilocytic astrocytoma and childhood glioblastoma.
    Type of Publication: Journal article published
    PubMed ID: 23817572
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...