Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: CELLS ; CELL ; Germany ; INHIBITION ; PROTEIN ; PROTEINS ; COMPLEX ; MECHANISM ; DOMAIN ; FORM ; PARTICLES ; DEGRADATION ; ANTIVIRAL ACTIVITY ; HIV-1 VIF ; LEUKEMIA-VIRUS ; VIF ; 2 DISTINCT ; ANTIRETROVIRAL DEFENSE ; CYTIDINE DEAMINASES ; EDITING ENZYME APOBEC3G ; MURINE APOBEC3 ; SOCS-BOX ; TYPE-1 VIF
    Abstract: The APOBEC3 cytidine deaminases are part of the intrinsic defense of cells against retroviruses. Lentiviruses and spumaviruses have evolved essential accessory proteins, Vif and Bet, respectively, which counteract the APOBEC3 proteins. We show here that Bet of the Prototype foamy virus inhibits the antiviral APOBEC3C activity by a mechanism distinct to Vif: Bet forms a complex with APOBEC3C without inducing its degradation. Bet abolished APOBEC3C dimerization as shown by co-immunoprecipitation and cross-linking experiments. These findings implicate a physical interaction between Bet and the APOBEC3C. Subsequently, we identified the Bet interaction domain in human APOBEC3C in the predicted APOBEC3C dimerization site. Taken together, these data support the hypothesis that Bet inhibits incorporation of APOBEC3Cs into retroviral particles. Bet likely achieves this by trapping APOBEC3C protein in complexes rendering them unavailable for newly generated viruses due to direct immobilization
    Type of Publication: Journal article published
    PubMed ID: 19074429
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: EXPRESSION ; RNA ; SIGNAL ; PARTICLES ; VECTORS ; foamy virus ; INFECTIVITY ; MURINE LEUKEMIA-VIRUS ; capsid assembly ; FUSION PROTEIN ; REVERSE TRANSCRIPTION ; C-TERMINUS ; Gag-Pol fusion protein ; Pol processing ; POLYPROTEIN ; retroviral morphogenesis
    Abstract: Background: Foamy viruses (FVs) unlike orthoretroviruses express Pol as a separate precursor protein and not as a Gag Pol fusion protein. A unique packaging strategy, involving recognition of briding viral RNA by both Pol precursor and Gag as well as potential Gag-Pol protein interactions, ensures Pol particle encapsidation. Results: Several Prototype FV (PFV) Gag-Pol fusion protein constructs were generated to examine whether PFV replication is compatible with an orthoretroviral-like Pol expression. During their analysis, non-particle-associated secreted Pol precursor protein was discovered in extracellular wild type PFV particle preparations of different origin, copurifying in simple virion enrichment protocols. Different analysis methods suggest that extracellular wild type PFV particles contain predominantly mature p85(PR-RT) and p40(IN) Pol subunits. Characterization of various PFV Gag Pol fusion constructs revealed that PFV Pol expression in an orthoretroviral manner is compatible with PFV replication as long as a proteolytic processing between Gag and Pol proteins is possible. PFV Gag-Pol translation by a HIV-1 like ribosomal frameshift signal resulted in production of replication-competent virions, although cell- and particle-associated Pol levels were reduced in comparison to wild type. In-frame fusion of PFV Gag and Pol ORFs led to increased cellular Pol levels, but particle incorporation was only marginally elevated. Unlike that reported for similar orthoretroviral constructs, a full-length in-frame PFV Gag-Pol fusion construct showed wildtype-like particle release and infectivity characteristics. In contrast, in-frame PFV Gag-Pol fusion with C-terminal Gag ORF truncations or non-removable Gag peptide addition to Pol displayed wildtype particle release, but reduced particle infectivity. PFV Gag-Pol precursor fusion proteins with inactivated protease were highly deficient in regular particle release, although coexpression of p71(Gag) resulted in a significant copackaging of these proteins. Conclusions: Non-particle associated PFV Pol appears to be naturally released from infected cells by a yet unknown mechanism. The absence of particle-associated Pol precursor suggests its rapid processing upon particle incorporation. Analysis of different PFV Gag-Pol fusion constructs demonstrates that orthoretroviral-like Pol expression is compatible with FV replication in principal as long as fusion protein processing is possible. Furthermore, unlike orthoretroviruses, PFV particle release and infectivity tolerate larger differences in relative cellular Gag/Pol levels
    Type of Publication: Journal article published
    PubMed ID: 21843316
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Abstract: NK cells are emerging as new effectors for immunotherapy of cancer. In particular, the genetic engraftment of chimeric Ag receptors (CARs) in NK cells is a promising strategy to redirect NK cells to otherwise NK cell-resistant tumor cells. On the basis of DNAX-activation protein 12 (DAP12), a signaling adaptor molecule involved in signal transduction of activating NK cell receptors, we generated a new type of CAR targeting the prostate stem cell Ag (PSCA). We demonstrate in this article that this CAR, designated anti-PSCA-DAP12, consisting of DAP12 fused to the anti-PSCA single-chain Ab fragment scFv(AM1) confers improved cytotoxicity to the NK cell line YTS against PSCA-positive tumor cells when compared with a CAR containing the CD3zeta signaling chain. Further analyses revealed phosphorylation of the DAP12-associated ZAP-70 kinase and IFN-gamma release of CAR-engineered cells after contact with PSCA-positive target cells. YTS cells modified with DAP12 alone or with a CAR bearing a phosphorylation-defective ITAM were not activated. Notably, infused YTS cells armed with anti-PSCA-DAP12 caused delayed tumor xenograft growth and resulted in complete tumor eradication in a significant fraction of treated mice. The feasibility of the DAP12-based CAR was further tested in human primary NK cells and confers specific cytotoxicity against KIR/HLA-matched PSCA-positive tumor cells, which was further enhanced by KIR-HLA mismatches. We conclude that NK cells engineered with DAP12-based CARs are a promising tool for adoptive tumor immunotherapy.
    Type of Publication: Journal article published
    PubMed ID: 25740942
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: mechanisms ; MOUSE ; OVEREXPRESSION ; neurogenesis ; EXPANSION ; PROMOTES ; MAINTENANCE ; QUIESCENCE ; P21(CIP1/WAF1) ; G1
    Abstract: Maintenance of stem cell properties is associated with reduced proliferation. However, in mouse hematopoietic stem cells (HSCs), loss of quiescence results in a wide range of phenotypes, ranging from functional failure to extensive self-renewal. It remains unknown whether the function of human HSCs is controlled by the kinetics of cell cycle progression. Using human HSCs and human progenitor cells (HSPCs), we report here that elevated levels of CCND1-CDK4 complexes promoted the transit from G0 to G1 and shortened the G1 cell cycle phase, resulting in protection from differentiation-inducing signals in vitro and increasing human leukocyte engraftment in vivo. Further, CCND1-CDK4 overexpression conferred a competitive advantage without impacting HSPC numbers. In contrast, accelerated cell cycle progression mediated by elevated levels of CCNE1-CDK2 led to the loss of functional HSPCs in vivo. Collectively, these data suggest that the transition kinetics through the early cell cycle phases are key regulators of human HSPC function and important for lifelong hematopoiesis.
    Type of Publication: Journal article published
    PubMed ID: 26150472
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: PEPTIDE ; Germany ; MICROSCOPY ; PATHWAY ; PATHWAYS ; PROTEIN ; PROTEINS ; RELEASE ; DOMAIN ; CONTRAST ; SEQUENCE ; PARTICLES ; virus ; MUTATION ; LINE ; inactivation ; OVEREXPRESSION ; MATRIX PROTEIN ; VIRION RELEASE ; electron microscopy ; MORPHOGENESIS ; ELECTRON-MICROSCOPY ; assembly ; AMINO-ACID ; interaction ; MUTANTS ; STRUCTURAL PROTEINS ; ENV ; VIRAL INFECTIVITY ; ENVELOPE GLYCOPROTEIN ; ROUS-SARCOMA VIRUS ; TSG101
    Abstract: Foamy viruses (FV) are unusual among retroviruses since they require both Gag and Env structural proteins for particle egress. Recently significant progress has been made towards the mechanistic understanding of the viral release process, in particular that of retroviruses, and the viral domains and cellular pathways involved. However little is currently known about domains of FV structural proteins and cellular proteins engaged in this process. By mutational analysis of sequence motifs in prototype FV (PFV) Gag, bearing homology to known late assembly (L) domains, a PSAP motif with L domain function that was functionally interchangeable by heterologous L domains was identified. In contrast the inactivation of a PPPI motif had no significant influence on PFV particle release, although mutant viral particles displayed reduced infectivity. Similarly mutation of an evolutionary conserved YXXL motif revealed no classical L-domain function but resulted in release of noninfectious viruslike particles. Biochemical and electron microscopy analysis demonstrated that these mutant particles incorporated all viral structural proteins but contained aberrantly capsid structures, suggesting a role in capsid assembly for this PFV Gag sequence motif. In line with the mutational analysis, overexpression of dominant negative (DN) mutants and wild-type TSG101 but not the DN mutant of AIP-1/ALIX reduced PFV particle release and infectivity. Furthermore, DN mutants of Vps4A, Vps4B, and CHMP3 inhibited PFV egress and infectivity. Taken together these results demonstrate that PFV, like other viruses, requires components of the vacuolar protein sorting (VPS) machinery for egress and enters the VPS pathway through interaction with TSG101
    Type of Publication: Journal article published
    PubMed ID: 15827161
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: Germany ; GENOME ; RNA ; DNA ; INFECTIVITY ; NUCLEAR-LOCALIZATION ; POL PROTEINS ; ENCAPSIDATION ; C-TERMINUS ; SPUMAVIRUSES ; T-TEST
    Abstract: Prototype foamy virus (PFV) Gag lacks the characteristic orthoretroviral Cys-His motifs that are essential for various steps of the orthoretroviral replication cycle, such as RNA packaging, reverse transcription, infectivity, integration, and viral assembly. Instead, it contains three glycine-arginine-rich boxes (GR boxes) in its C terminus that putatively represent a functional equivalent. We used a four-plasmid replication-deficient PFV vector system, with uncoupled RNA genome packaging and structural protein translation, to analyze the effects of deletion and various substitution mutations within each GR box on particle release, particle-associated protein composition, RNA packaging, DNA content, infectivity, particle morphology, and intracellular localization. The degree of viral particle release by all mutants was similar to that of the wild type. Only minimal effects on Pol encapsidation, exogenous reverse transcriptase (RT) activity, and genomic viral RNA packaging were observed. In contrast, particle-associated DNA content and infectivity were drastically reduced for all deletion mutants and were undetectable for all alanine substitution mutants. Furthermore, GR box I mutants had significant changes in particle morphology, and GR box II mutants lacked the typical nuclear localization pattern of PFV Gag. Finally, it could be shown that GR boxes I and III, but not GR box II, can functionally complement each other. It therefore appears that, similar to the orthoretroviral Cys-His motifs, the PFV Gag GR boxes are important for RNA encapsidation, genome reverse transcription, and virion infectivity as well as for particle morphogenesis
    Type of Publication: Journal article published
    PubMed ID: 21106749
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: IDENTIFICATION ; HUMANS ; RETROVIRUSES ; VECTOR ; TRANSMISSION ; APOBEC3
    Abstract: For the past two decades, scientists from around the world, working on different aspects of foamy virus (FV) research, have gathered in different research institutions almost every two years to present their recent results in formal talks, to discuss their ongoing studies informally, and to initiate fruitful collaborations. In this report we review the 2014 anniversary conference to share the meeting summary with the virology community and hope to arouse interest by other researchers to join this exciting field. The topics covered included epidemiology, virus molecular biology, and immunology of FV infection in non-human primates, cattle, and humans with zoonotic FV infections, as well as recent findings on endogenous FVs. Several topics focused on virus replication and interactions between viral and cellular proteins. Use of FV in biomedical research was highlighted with presentations on using FV vectors for gene therapy and FV proteins as scaffold for vaccine antigen presentation. On behalf of the FV community, this report also includes a short tribute to commemorate Prof. Axel Rethwilm, one of the leading experts in the field of retrovirology and foamy viruses, who passed away 29 July 2014.
    Type of Publication: Journal article published
    PubMed ID: 25835535
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Abstract: Spumaretroviruses, commonly referred to as foamy viruses, are complex retroviruses belonging to the subfamily Spumaretrovirinae, family Retroviridae, which naturally infect a variety of animals including nonhuman primates (NHPs). Additionally, cross-species transmissions of simian foamy viruses (SFVs) to humans have occurred following exposure to tissues of infected NHPs. Recent research has led to the identification of previously unknown exogenous foamy viruses, and to the discovery of endogenous spumaretrovirus sequences in a variety of host genomes. Here, we describe an updated spumaretrovirus taxonomy that has been recently accepted by the International Committee on Taxonomy of Viruses (ICTV) Executive Committee, and describe a virus nomenclature that is generally consistent with that used for other retroviruses, such as lentiviruses and deltaretroviruses. This taxonomy can be applied to distinguish different, but closely related, primate (e.g., human, ape, simian) foamy viruses as well as those from other hosts. This proposal accounts for host-virus co-speciation and cross-species transmission.
    Type of Publication: Journal article published
    PubMed ID: 29407373
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: Germany ; SITE ; GENE ; PROTEIN ; PROTEINS ; DOMAIN ; SEQUENCE ; ACID ; virus ; DELETION ; REVERSE-TRANSCRIPTASE ; MUTATION ; DELETIONS ; REGION ; MUTATIONS ; point mutation ; MATRIX PROTEIN ; MURINE LEUKEMIA-VIRUS ; RESIDUES ; assembly ; END ; AMINO-ACID ; MUTANTS ; D RETROVIRUSES ; ENV ; ENV LEADER PROTEIN ; ENVELOPE ; ENVELOPE PROTEIN ; POL PROTEINS ; REPLICATION STRATEGY ; VIRAL INFECTIVITY
    Abstract: Among the Retroviridae, foamy viruses (FVs) exhibit an unusual way of particle assembly and a highly specific incorporation of envelope protein into progeny virions. We have analyzed deletions and point mutants of the prototypic FV gag gene for capsid assembly and egress, envelope protein incorporation, infectivity, and ultrastructure. Deletions introduced at the 3' end of gag revealed the first 297 amino acids (aa) to be sufficient for specific Env incorporation and export of particulate material. Deletions introduced at the 5' end showed the region between as 6 and 200 to be dispensable for virus capsid assembly but required for the incorporation of Env and particle egress. Point mutations were introduced in the 5' region of gag to target residues conserved among FVs from different species. Alanine substitutions of residues in a region between as 40 and 60 resulted in severe alterations in particle morphology. Furthermore, at position 50, this region harbors the conserved arginine that is presumably at the center of a signal sequence directing FV Gag proteins to a cytoplasmic assembly site
    Type of Publication: Journal article published
    PubMed ID: 16160174
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...