Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Chichester, West Sussex : Wiley-Blackwell
    ISSN: 0170-4214
    Keywords: Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics
    Notes: In space-based robotics, one of the most important problems is the disturbance to the satellite attitude and to the satellite microgravity environment caused by satellite mounted robot operation. This paper reports on computer-aided motion planning strategies to overcome this problem. Point-to-point motion designs are generated which not only connect prescribed start and end points of the robot motion, but also simultaneously return the satellite to its original attitude. Theoretical characterizations of some of those motion designs are presented, as well as numerical results. The computation time required to produce such motion designs is 1 or 2 min on a workstation. Thus, it can be practical to use these motion plans in space. © 1998 B. G. Teubner Stuttgart-John Wiley & Sons Ltd.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9478
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Dual-spin or gyrostat satellites subject to gravitational torques can adopt an infinite number of possible equilibria obtained by adjusting the magnitude and direction of the rotor angular momentum within the satellite. This paper seeks to answer the question, which of these equilibria is best — and best is chosen here to mean most stable in the sense that the energy required to perturb the orientation by any prescribed amount is maximized, i.e. the smallest eigenvalue of the Hessian matrix of the dynamic potential energy is maximized. Using this criterion, it is shown that the conventional configuration for dual-spin satellites with the angular momentum of the rotor, the spacecraft principal axis of maximum moment of inertia, and the perpendicular to the orbital plane coincident is not always the best orientation. The optimal configuration is shown to have the minimum moment of inertia always aligned with the local vertical, but the principal axis of maximum moment of inertia, shifts from the perpendicular to the orbital plane to lying in-plane as the angular momentum of the rotor is increased from zero (corresponding to a rigid gravity gradient satellite) to some sufficiently large value which is determined as a function of parameters. For angular momentum greater than this value, global optimality is established analytically, and otherwise local optimality is proved analytically with global optimality demonstrated numerically.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-9478
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Three special classes of equilibrium orientations of gyrostat satellites subject to gravitational torques have been treated in the literature. Here we find the set of all equilibria for a restricted class of gyrostat configurations. Those configurations for which the internal angular momentum vector (or the rotor axis) is aligned with a principal axis have been treated in a separate work, where it is shown that at one, and only one, rotor speed there exists a continuum of equilibrium orientations. When the rotor axis is moved away from a principal axis in such a way that it is contained in a plane formed by two principal axes, it is shown that the continuum disappears, and we have a new set of eight equilibrium orientations which have not previously been described. The stability of these orientations is then investigated using the Hamiltonian as a Liapunov testing function. For properly chosen satellite inertia ratios some of these orientations are stable, and might be used in future gravitygradient stabilized satellites.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...