Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Abstract: An alcohol-based non-crosslinking tissue fixative, PAXgene Tissue System, has been proposed as alternative fixation method to formalin, providing superior and morphological preservation. To date, metabolites have not been assessed in PAXgene-fixed tissues. The study focuses on a comparison between PAXgene and standard formalin fixation for metabolomic analysis by MALDI mass spectrometry imaging. Therefore, fifty-six samples from seven mice organs were fixed with PAXgene (PFPE) or formalin (FFPE), embedded in paraffin, and processed to a tissue microarray. PAXgene was able to spatially preserve metabolites in organs achieving an overlap of common metabolites ranging from 34 to 78% with FFPE. Highly similar signal intensities and visualization of molecules demonstrated negligible differences for metabolite imaging on PFPE compared to FFPE tissues. In addition, we performed proteomic analysis of intact proteins and peptides derived from enzymatic digestion. An overlap of 33 to 58% was found between FFPE and PFPE tissue samples in peptide analysis with a higher number of PFPE-specific peaks. Analysis of intact proteins achieved an overlap in the range of 0 to 28% owing to the poor detectability of cross-linked proteins in formalin-fixed tissues. Furthermore, metabolite and peptide profiles obtained from PFPE tissues were able to correctly classify organs independent of the fixation method, whereas a distinction of organs by protein profiles was only achieved by PAXgene fixation. Finally, we applied MALDI MSI to human biopsies by sequentially analyzing metabolites and peptides within the same tissue section. Concerning prospective studies, PAXgene can be used as an alternative fixative for multi-omic tissue analysis.
    Type of Publication: Journal article published
    PubMed ID: 29024724
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: SURVIVAL ; QUANTIFICATION ; MECHANISM ; T-CELLS ; ASSOCIATION ; LYMPHOCYTES ; microsatellite instability ; TUMOR ESCAPE ; IMMUNOSURVEILLANCE ; cetuximab ; SUPPRESSOR-CELLS
    Abstract: Analysis of tumor-infiltrating lymphocytes (TIL) in primary human colorectal cancer (CRC) by in situ immunohistochemical staining supports the hypothesis that the adaptive immune response influences the course of human CRC. Specifically, high densities of TILs in the primary tumor are associated with good prognosis independent of other prognostic markers. However, the prognostic role of TILs in metastatic CRC lesions is unknown, as is their role in response or resistance to conventional chemotherapy. We analyzed the association of TIL densities at the invasive margin of CRC liver metastases with response to chemotherapy and progression-free survival in a set of 101 large section samples. High-resolution automated microscopy on complete tissue sections was used to objectively generate cell densities for CD3, CD8, granzyme B, or FOXP3 positive immune cells. A predictive scoring system using TIL densities was developed in a training set and tested successfully in an independent validation set. TIL densities at the invasive margin of liver metastases allowed the prediction of response to chemotherapy with a sensitivity of 79% and specificity of 100%. The association of high density values with longer progression-free survival under chemotherapy was statistically significant. Overall, these findings extend the impact of the local immune response on the clinical course from the primary tumor also to metastatic lesions. Because detailed quantification of TILs in metastatic lesions revealed a strong association with chemotherapy efficacy and prognosis, we suggest that the developed scoring system may be used as a predictive tool for response to chemotherapy in metastatic CRC.
    Type of Publication: Journal article published
    PubMed ID: 21846824
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...