Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-10-11
    Description: Spatial and temporal dissection of the genomic changes occurring during the evolution of human non-small cell lung cancer (NSCLC) may help elucidate the basis for its dismal prognosis. We sequenced 25 spatially distinct regions from seven operable NSCLCs and found evidence of branched evolution, with driver mutations arising before and after subclonal diversification. There was pronounced intratumor heterogeneity in copy number alterations, translocations, and mutations associated with APOBEC cytidine deaminase activity. Despite maintained carcinogen exposure, tumors from smokers showed a relative decrease in smoking-related mutations over time, accompanied by an increase in APOBEC-associated mutations. In tumors from former smokers, genome-doubling occurred within a smoking-signature context before subclonal diversification, which suggested that a long period of tumor latency had preceded clinical detection. The regionally separated driver mutations, coupled with the relentless and heterogeneous nature of the genome instability processes, are likely to confound treatment success in NSCLC.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4636050/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4636050/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Bruin, Elza C -- McGranahan, Nicholas -- Mitter, Richard -- Salm, Max -- Wedge, David C -- Yates, Lucy -- Jamal-Hanjani, Mariam -- Shafi, Seema -- Murugaesu, Nirupa -- Rowan, Andrew J -- Gronroos, Eva -- Muhammad, Madiha A -- Horswell, Stuart -- Gerlinger, Marco -- Varela, Ignacio -- Jones, David -- Marshall, John -- Voet, Thierry -- Van Loo, Peter -- Rassl, Doris M -- Rintoul, Robert C -- Janes, Sam M -- Lee, Siow-Ming -- Forster, Martin -- Ahmad, Tanya -- Lawrence, David -- Falzon, Mary -- Capitanio, Arrigo -- Harkins, Timothy T -- Lee, Clarence C -- Tom, Warren -- Teefe, Enock -- Chen, Shann-Ching -- Begum, Sharmin -- Rabinowitz, Adam -- Phillimore, Benjamin -- Spencer-Dene, Bradley -- Stamp, Gordon -- Szallasi, Zoltan -- Matthews, Nik -- Stewart, Aengus -- Campbell, Peter -- Swanton, Charles -- 088340/Wellcome Trust/United Kingdom -- 091730/Wellcome Trust/United Kingdom -- 105104/Wellcome Trust/United Kingdom -- A11590/Cancer Research UK/United Kingdom -- A17786/Cancer Research UK/United Kingdom -- A19310/Cancer Research UK/United Kingdom -- A4688/Cancer Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Oct 10;346(6206):251-6. doi: 10.1126/science.1253462.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London WC1E 6BT, UK. ; Cancer Research UK London Research Institute, London WC2A 3LY, UK. Centre for Mathematics and Physics in the Life Science and Experimental Biology (CoMPLEX), University College London, London WC1E 6BT, UK. ; Cancer Research UK London Research Institute, London WC2A 3LY, UK. ; Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK. ; Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK. University of Cambridge, Cambridge CB2 1TN, UK. ; Instituto de Biomedicina y Biotecnologia de Cantabria (CSIC-UC-Sodercan), Departamento de Biologia Molecular, Universidad de Cantabria, Santander, Spain. ; Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK. Department of Human Genetics, University of Leuven, 3000 Leuven, Belgium. ; Papworth Hospital NHS Foundation Trust, Cambridge CB23 3RE, UK. ; Lungs for Living Research Centre, University College London, London WC1E 6BT, UK. ; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London WC1E 6BT, UK. University College London Hospitals, London NW1 2BU, UK. ; University College London Hospitals, London NW1 2BU, UK. ; Thermo Fisher Scientific, Carlsbad, CA 92008, USA. ; Technical University of Denmark, 2800 Kongens Lyngby, Denmark. Children's Hospital Informatics Program, Harvard Medical School, Boston, MA 02115, USA. ; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London WC1E 6BT, UK. Cancer Research UK London Research Institute, London WC2A 3LY, UK. charles.swanton@cancer.org.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25301630" target="_blank"〉PubMed〈/a〉
    Keywords: Carcinogens/toxicity ; Carcinoma, Non-Small-Cell Lung/chemically induced/*diagnosis/*genetics ; Cytidine Deaminase/genetics ; Evolution, Molecular ; Gene Dosage ; *Genetic Heterogeneity ; *Genomic Instability ; Humans ; Lung Neoplasms/chemically induced/*diagnosis/*genetics ; Mutation ; Neoplasm Recurrence, Local/genetics ; Prognosis ; Smoking/adverse effects ; Translocation, Genetic ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    German Medical Science GMS Publishing House; Düsseldorf
    In:  179. Versammlung des Vereins Rheinisch-Westfälischer Augenärzte; 20170203-20170204; Essen; DOC17rwa002 /20170202/
    Publication Date: 2017-02-02
    Keywords: ddc: 610
    Language: German
    Type: conferenceObject
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    German Medical Science GMS Publishing House; Düsseldorf
    In:  Jahrestagung der Vereinigung Bayerischer Augenärzte BayOG 2015; 20150710-20150711; Würzburg; DOC15bayog18 /20150709/
    Publication Date: 2015-07-10
    Keywords: ddc: 610
    Language: German
    Type: conferenceObject
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-10-31
    Description: BACKGROUND: Circulating free DNA sequencing (cfDNA-Seq) can portray cancer genome landscapes, but highly sensitive and specific technologies are necessary to accurately detect mutations with often low variant frequencies. METHODS: We developed a customizable hybrid-capture cfDNA-Seq technology using off-the-shelf molecular barcodes and a novel duplex DNA molecule identification tool for enhanced error correction. RESULTS: Modeling based on cfDNA yields from 58 patients showed that this technology, requiring 25 ng of cfDNA, could be applied to 〉95% of patients with metastatic colorectal cancer (mCRC). cfDNA-Seq of a 32-gene, 163.3-kbp target region detected 100% of single-nucleotide variants, with 0.15% variant frequency in spike-in experiments. Molecular barcode error correction reduced false-positive mutation calls by 97.5%. In 28 consecutively analyzed patients with mCRC, 80 out of 91 mutations previously detected by tumor tissue sequencing were called in the cfDNA. Call rates were similar for point mutations and indels. cfDNA-Seq identified typical mCRC driver mutations in patients in whom biopsy sequencing had failed or did not include key mCRC driver genes. Mutations only called in cfDNA but undetectable in matched biopsies included a subclonal resistance driver mutation to anti-EGFR antibodies in KRAS , parallel evolution of multiple PIK3CA mutations in 2 cases, and TP53 mutations originating from clonal hematopoiesis. Furthermore, cfDNA-Seq off-target read analysis allowed simultaneous genome-wide copy number profile reconstruction in 20 of 28 cases. Copy number profiles were validated by low-coverage whole-genome sequencing. CONCLUSIONS: This error-corrected, ultradeep cfDNA-Seq technology with a customizable target region and publicly available bioinformatics tools enables broad insights into cancer genomes and evolution. ClinicalTrials.gov Identifier: NCT02112357
    Keywords: Cancer Diagnostics (since 2002)
    Print ISSN: 0009-9147
    Electronic ISSN: 1530-8561
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    The American Association for Cancer Research (AACR)
    Publication Date: 2018-05-02
    Description: Lymph node metastases are among the best predictors of recurrence and of cancer-related death in early-stage colorectal cancers. Yet, despite their clinical and biological relevance, it remains elusive how lymph node metastases develop and whether metastatic seeding is a major bottleneck that restrains genetic heterogeneity of metastatic disease. Clin Cancer Res; 24(9); 2032–4. ©2018 AACR . See related article by Ulintz et al., p. 2214
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...