Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Proceed order?

Export
  • 1
    Publication Date: 2014-07-11
    Description: Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the 'gold standard', they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ma, Hong -- Morey, Robert -- O'Neil, Ryan C -- He, Yupeng -- Daughtry, Brittany -- Schultz, Matthew D -- Hariharan, Manoj -- Nery, Joseph R -- Castanon, Rosa -- Sabatini, Karen -- Thiagarajan, Rathi D -- Tachibana, Masahito -- Kang, Eunju -- Tippner-Hedges, Rebecca -- Ahmed, Riffat -- Gutierrez, Nuria Marti -- Van Dyken, Crystal -- Polat, Alim -- Sugawara, Atsushi -- Sparman, Michelle -- Gokhale, Sumita -- Amato, Paula -- Wolf, Don P -- Ecker, Joseph R -- Laurent, Louise C -- Mitalipov, Shoukhrat -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jul 10;511(7508):177-83. doi: 10.1038/nature13551. Epub 2014 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 Southwest Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA [3]. ; 1] Department of Reproductive Medicine, University of California, San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, California 92037, USA [2]. ; 1] Genomic Analysis Laboratory, the Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Bioinformatics Program, University of California at San Diego, La Jolla, California 92093, USA. ; 1] Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 Southwest Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA. ; Genomic Analysis Laboratory, the Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; Department of Reproductive Medicine, University of California, San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, California 92037, USA. ; 1] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA [2] Department of Obstetrics and Gynecology, South Miyagi Medical Center, Shibata-gun, Miyagi 989-1253, Japan (M.T.); Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden (A.P.). ; Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA. ; University Pathologists LLC, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island 02118, USA. ; Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, USA. ; 1] Genomic Analysis Laboratory, the Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Howard Hughes Medical Institute, the Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; 1] Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 Southwest Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA [3] Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25008523" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; *Cellular Reprogramming ; Chromosome Aberrations ; Chromosomes, Human, X/genetics/metabolism ; DNA Copy Number Variations ; DNA Methylation ; Genome-Wide Association Study ; Genomic Imprinting ; Humans ; Nuclear Transfer Techniques/standards ; Pluripotent Stem Cells/cytology/*metabolism ; Transcriptome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-03-29
    Description: Successful mammalian cloning using somatic cell nuclear transfer (SCNT) into unfertilized, metaphase II (MII)-arrested oocytes attests to the cytoplasmic presence of reprogramming factors capable of inducing totipotency in somatic cell nuclei. However, these poorly defined maternal factors presumably decline sharply after fertilization, as the cytoplasm of pronuclear-stage zygotes is reportedly inactive. Recent evidence suggests that zygotic cytoplasm, if maintained at metaphase, can also support derivation of embryonic stem (ES) cells after SCNT, albeit at low efficiency. This led to the conclusion that critical oocyte reprogramming factors present in the metaphase but not in the interphase cytoplasm are 'trapped' inside the nucleus during interphase and effectively removed during enucleation. Here we investigated the presence of reprogramming activity in the cytoplasm of interphase two-cell mouse embryos (I2C). First, the presence of candidate reprogramming factors was documented in both intact and enucleated metaphase and interphase zygotes and two-cell embryos. Consequently, enucleation did not provide a likely explanation for the inability of interphase cytoplasm to induce reprogramming. Second, when we carefully synchronized the cell cycle stage between the transplanted nucleus (ES cell, fetal fibroblast or terminally differentiated cumulus cell) and the recipient I2C cytoplasm, the reconstructed SCNT embryos developed into blastocysts and ES cells capable of contributing to traditional germline and tetraploid chimaeras. Last, direct transfer of cloned embryos, reconstructed with ES cell nuclei, into recipients resulted in live offspring. Thus, the cytoplasm of I2C supports efficient reprogramming, with cell cycle synchronization between the donor nucleus and recipient cytoplasm as the most critical parameter determining success. The ability to use interphase cytoplasm in SCNT could aid efforts to generate autologous human ES cells for regenerative applications, as donated or discarded embryos are more accessible than unfertilized MII oocytes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124901/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124901/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Eunju -- Wu, Guangming -- Ma, Hong -- Li, Ying -- Tippner-Hedges, Rebecca -- Tachibana, Masahito -- Sparman, Michelle -- Wolf, Don P -- Scholer, Hans R -- Mitalipov, Shoukhrat -- P51 OD011092/OD/NIH HHS/ -- P51OD011092/OD/NIH HHS/ -- R01 EY021214/EY/NEI NIH HHS/ -- R01 HD057121/HD/NICHD NIH HHS/ -- R01 HD059946/HD/NICHD NIH HHS/ -- R01 HD063276/HD/NICHD NIH HHS/ -- R01EY021214/EY/NEI NIH HHS/ -- R01HD057121/HD/NICHD NIH HHS/ -- R01HD059946/HD/NICHD NIH HHS/ -- R01HD063276/HD/NICHD NIH HHS/ -- England -- Nature. 2014 May 1;509(7498):101-4. doi: 10.1038/nature13134. Epub 2014 Mar 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA. ; Max Planck Institute for Molecular Biomedicine, Munster 48149, Germany. ; 1] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA [2] South Miyagi Medical Center, Miyagi 989-1253, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670652" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Count ; *Cellular Reprogramming ; Cloning, Organism ; Cytoplasm/*metabolism ; Embryo, Mammalian/*cytology ; Embryonic Stem Cells/*cytology ; Female ; Induced Pluripotent Stem Cells/*cytology ; *Interphase ; Male ; Metaphase ; Mice ; *Nuclear Transfer Techniques
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-10-30
    Description: Mutations in mitochondrial DNA (mtDNA) are associated with severe human diseases and are maternally inherited through the egg's cytoplasm. Here we investigated the feasibility of mtDNA replacement in human oocytes by spindle transfer (ST; also called spindle-chromosomal complex transfer). Of 106 human oocytes donated for research, 65 were subjected to reciprocal ST and 33 served as controls. Fertilization rate in ST oocytes (73%) was similar to controls (75%); however, a significant portion of ST zygotes (52%) showed abnormal fertilization as determined by an irregular number of pronuclei. Among normally fertilized ST zygotes, blastocyst development (62%) and embryonic stem cell isolation (38%) rates were comparable to controls. All embryonic stem cell lines derived from ST zygotes had normal euploid karyotypes and contained exclusively donor mtDNA. The mtDNA can be efficiently replaced in human oocytes. Although some ST oocytes displayed abnormal fertilization, remaining embryos were capable of developing to blastocysts and producing embryonic stem cells similar to controls.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561483/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561483/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tachibana, Masahito -- Amato, Paula -- Sparman, Michelle -- Woodward, Joy -- Sanchis, Dario Melguizo -- Ma, Hong -- Gutierrez, Nuria Marti -- Tippner-Hedges, Rebecca -- Kang, Eunju -- Lee, Hyo-Sang -- Ramsey, Cathy -- Masterson, Keith -- Battaglia, David -- Lee, David -- Wu, Diana -- Jensen, Jeffrey -- Patton, Phillip -- Gokhale, Sumita -- Stouffer, Richard -- Mitalipov, Shoukhrat -- 8P51OD011092/OD/NIH HHS/ -- EY021214/EY/NEI NIH HHS/ -- HD057121/HD/NICHD NIH HHS/ -- HD059946/HD/NICHD NIH HHS/ -- HD063276/HD/NICHD NIH HHS/ -- P51 OD011092/OD/NIH HHS/ -- P51 RR000163/RR/NCRR NIH HHS/ -- R01 EY021214/EY/NEI NIH HHS/ -- R01 HD057121/HD/NICHD NIH HHS/ -- R01 HD059946/HD/NICHD NIH HHS/ -- R01 HD063276/HD/NICHD NIH HHS/ -- England -- Nature. 2013 Jan 31;493(7434):627-31. doi: 10.1038/nature11647. Epub 2012 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23103867" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Cell Nucleus/genetics ; Cryopreservation ; Cytoplasm/genetics ; DNA, Mitochondrial/analysis/genetics ; Embryo, Mammalian/embryology ; Embryonic Stem Cells/cytology ; Female ; Fertilization ; *Genetic Therapy ; Humans ; Macaca mulatta/genetics/growth & development ; Microsatellite Repeats/genetics ; Mitochondrial Diseases/*genetics/*therapy ; Nuclear Transfer Techniques/*standards ; Oocytes/cytology ; Pregnancy ; Young Adult ; Zygote/cytology/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...