Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
  • 1
  • 2
  • 3
    Publication Date: 2012-12-18
    Description: Chronic neuroinflammation is a common feature of the ageing brain and some neurodegenerative disorders. However, the molecular and cellular mechanisms underlying the regulation of innate immunity in the central nervous system remain elusive. Here we show that the astrocytic dopamine D2 receptor (DRD2) modulates innate immunity through alphaB-crystallin (CRYAB), which is known to suppress neuroinflammation. We demonstrate that knockout mice lacking Drd2 showed remarkable inflammatory response in multiple central nervous system regions and increased the vulnerability of nigral dopaminergic neurons to neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. Astrocytes null for Drd2 became hyper-responsive to immune stimuli with a marked reduction in the level of CRYAB. Preferential ablation of Drd2 in astrocytes robustly activated astrocytes in the substantia nigra. Gain- or loss-of-function studies showed that CRYAB is critical for DRD2-mediated modulation of innate immune response in astrocytes. Furthermore, treatment of wild-type mice with the selective DRD2 agonist quinpirole increased resistance of the nigral dopaminergic neurons to MPTP through partial suppression of inflammation. Our study indicates that astrocytic DRD2 activation normally suppresses neuroinflammation in the central nervous system through a CRYAB-dependent mechanism, and provides a new strategy for targeting the astrocyte-mediated innate immune response in the central nervous system during ageing and disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shao, Wei -- Zhang, Shu-zhen -- Tang, Mi -- Zhang, Xin-hua -- Zhou, Zheng -- Yin, Yan-qing -- Zhou, Qin-bo -- Huang, Yuan-yuan -- Liu, Ying-jun -- Wawrousek, Eric -- Chen, Teng -- Li, Sheng-bin -- Xu, Ming -- Zhou, Jiang-ning -- Hu, Gang -- Zhou, Jia-wei -- England -- Nature. 2013 Feb 7;494(7435):90-4. doi: 10.1038/nature11748. Epub 2012 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23242137" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology ; Animals ; Astrocytes/drug effects/*immunology/*metabolism ; Dopaminergic Neurons/drug effects ; Immunity, Innate/drug effects ; Inflammation/chemically induced/genetics/*immunology/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Microglia/cytology/immunology ; Neuroprotective Agents/metabolism ; Quinpirole/pharmacology ; Receptors, Dopamine D2/agonists/deficiency/genetics/*metabolism ; Substantia Nigra/cytology/drug effects ; alpha-Crystallin B Chain/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-20
    Description: Multivalent molecules with repetitive structures including bacterial capsular polysaccharides and viral capsids elicit antibody responses through B cell receptor (BCR) crosslinking in the absence of T cell help. We report that immunization with these T cell-independent type 2 (TI-2) antigens causes up-regulation of endogenous retrovirus (ERV) RNAs in antigen-specific mouse B cells. These RNAs are detected via a mitochondrial antiviral signaling protein (MAVS)-dependent RNA sensing pathway or reverse-transcribed and detected via the cGAS-cGAMP-STING pathway, triggering a second, sustained wave of signaling that promotes specific immunoglobulin M production. Deficiency of both MAVS and cGAS, or treatment of MAVS-deficient mice with reverse transcriptase inhibitors, dramatically inhibits TI-2 antibody responses. These findings suggest that ERV and two innate sensing pathways that detect them are integral components of the TI-2 B cell signaling apparatus.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391621/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391621/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zeng, Ming -- Hu, Zeping -- Shi, Xiaolei -- Li, Xiaohong -- Zhan, Xiaoming -- Li, Xiao-Dong -- Wang, Jianhui -- Choi, Jin Huk -- Wang, Kuan-wen -- Purrington, Tiana -- Tang, Miao -- Fina, Maggy -- DeBerardinis, Ralph J -- Moresco, Eva Marie Y -- Pedersen, Gabriel -- McInerney, Gerald M -- Karlsson Hedestam, Gunilla B -- Chen, Zhijian J -- Beutler, Bruce -- P01 AI070167/AI/NIAID NIH HHS/ -- R01 AI093967/AI/NIAID NIH HHS/ -- R01 CA157996/CA/NCI NIH HHS/ -- U19 AI100627/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1486-92. doi: 10.1126/science.346.6216.1486.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8502, USA. ; Department of Pediatrics and Children's Medical Center Research Institute, and McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8502, USA. ; Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8502, USA. Howard Hughes Medical Institute, Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA. ; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels vag 16, SE-171 77 Stockholm, Sweden. ; Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8502, USA. Bruce.Beutler@UTSouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525240" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics/*immunology ; Animals ; Antibody Formation ; Antigens, T-Independent/*immunology ; B-Lymphocytes/*immunology ; Cytosol/immunology ; DNA/immunology ; Endogenous Retroviruses/genetics/*immunology ; Lymphocyte Activation ; Membrane Proteins/immunology ; Mice ; Mice, Inbred C57BL ; NF-kappa B/metabolism ; Nucleotides, Cyclic/immunology ; Nucleotidyltransferases/genetics/*immunology ; RNA, Viral/genetics/*immunology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-01-23
    Description: The Archean Eon witnessed the production of early continental crust, the emergence of life, and fundamental changes to the atmosphere. The nature of the first continental crust, which was the interface between the surface and deep Earth, has been obscured by the weathering, erosion, and tectonism that followed its formation. We used Ni/Co and Cr/Zn ratios in Archean terrigenous sedimentary rocks and Archean igneous/metaigneous rocks to track the bulk MgO composition of the Archean upper continental crust. This crust evolved from a highly mafic bulk composition before 3.0 billion years ago to a felsic bulk composition by 2.5 billion years ago. This compositional change was attended by a fivefold increase in the mass of the upper continental crust due to addition of granitic rocks, suggesting the onset of global plate tectonics at ~3.0 billion years ago.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Ming -- Chen, Kang -- Rudnick, Roberta L -- New York, N.Y. -- Science. 2016 Jan 22;351(6271):372-5. doi: 10.1126/science.aad5513.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geology, University of Maryland, College Park, MD 20742, USA. Corresponding author. E-mail: tangmyes@gmail.com. ; Department of Geology, University of Maryland, College Park, MD 20742, USA. State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China. ; Department of Geology, University of Maryland, College Park, MD 20742, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26798012" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-27
    Description: Neisseria meningitidis has several strategies to evade complement-mediated killing, and these contribute to its ability to cause septicaemic disease and meningitis. However, the meningococcus is primarily an obligate commensal of the human nasopharynx, and it is unclear why the bacterium has evolved exquisite mechanisms to avoid host immunity. Here we demonstrate that mechanisms of meningococcal immune evasion and resistance against complement increase in response to an increase in ambient temperature. We have identified three independent RNA thermosensors located in the 5' untranslated regions of genes necessary for capsule biosynthesis, the expression of factor H binding protein, and sialylation of lipopolysaccharide, which are essential for meningococcal resistance against immune killing. Therefore increased temperature (which occurs during inflammation) acts as a 'danger signal' for the meningococcus, enhancing its defence against human immune killing. Infection with viral pathogens, such as influenza, leads to inflammation in the nasopharynx with an increased temperature and recruitment of immune effectors. Thermoregulation of immune defence could offer an adaptive advantage to the meningococcus during co-infection with other pathogens, and promote the emergence of virulence in an otherwise commensal bacterium.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836223/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836223/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Loh, Edmund -- Kugelberg, Elisabeth -- Tracy, Alexander -- Zhang, Qian -- Gollan, Bridget -- Ewles, Helen -- Chalmers, Ronald -- Pelicic, Vladimir -- Tang, Christoph M -- 084369/Wellcome Trust/United Kingdom -- 093470/Wellcome Trust/United Kingdom -- G0900888/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2013 Oct 10;502(7470):237-40. doi: 10.1038/nature12616. Epub 2013 Sep 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sir William Dunn School of Pathology, University of Oxford, Sir Parks Road, Oxford OX1 3RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24067614" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions/genetics ; Bacterial Capsules/genetics ; Bacterial Proteins/genetics/metabolism ; Gene Expression Regulation, Bacterial ; Humans ; Immune Evasion/genetics/*physiology ; Lipopolysaccharides/metabolism ; Meningococcal Infections/*immunology/microbiology ; Neisseria meningitidis/genetics/*physiology ; RNA, Bacterial/chemistry/genetics ; *Temperature ; Thermosensing/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-09-20
    Description: Anastasis is a natural cell recovery phenomenon that rescues cells from the brink of death. Programmed cell death such as apoptosis has been traditionally assumed to be an intrinsically irreversible cascade that commits cells to a rapid and massive demolition. Interestingly, recent studies have demonstrated recovery of dying cells even at the late stages generally considered immutable. Here, we examine the evidence for anastasis in cultured cells and in animals, review findings illuminating the potential mechanisms of action, discuss the challenges of studying anastasis and explore new strategies to uncover the function and regulation of anastasis, the identification of which has wide-ranging physiological, pathological and therapeutic implications.
    Keywords: molecular biology, cellular biology
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-10-11
    Keywords: molecular biology, cellular biology
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-11-29
    Description: Gene therapy is emerging as a promising approach for treating neurological disorders, including Parkinson’s disease (PD). A phase 2 clinical trial showed that delivering glutamic acid decarboxylase ( GAD ) into the subthalamic nucleus (STN) of patients with PD had therapeutic effects. To determine the mechanism underlying this response, we analyzed metabolic imaging data from patients who received gene therapy and those randomized to sham surgery, all of whom had been scanned preoperatively and at 6 and 12 months after surgery. Those who received GAD gene therapy developed a unique treatment-dependent polysynaptic brain circuit that we termed as the GAD –related pattern (GADRP), which reflected the formation of new polysynaptic functional pathways linking the STN to motor cortical regions. Patients in both the treatment group and the sham group expressed the previously reported placebo network (the sham surgery–related pattern or SSRP) when blinded to the treatment received. However, only the appearance of the GADRP correlated with clinical improvement in the gene therapy–treated subjects. Treatment-induced brain circuits can thus be useful in clinical trials for isolating true treatment responses and providing insight into their underlying biological mechanisms.
    Print ISSN: 1946-6234
    Electronic ISSN: 1946-6242
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-11-08
    Description: Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips. We dated the origin of insects to the Early Ordovician [~479 million years ago (Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the Mississippian (~345 Ma), and the major diversification of holometabolous insects to the Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Misof, Bernhard -- Liu, Shanlin -- Meusemann, Karen -- Peters, Ralph S -- Donath, Alexander -- Mayer, Christoph -- Frandsen, Paul B -- Ware, Jessica -- Flouri, Tomas -- Beutel, Rolf G -- Niehuis, Oliver -- Petersen, Malte -- Izquierdo-Carrasco, Fernando -- Wappler, Torsten -- Rust, Jes -- Aberer, Andre J -- Aspock, Ulrike -- Aspock, Horst -- Bartel, Daniela -- Blanke, Alexander -- Berger, Simon -- Bohm, Alexander -- Buckley, Thomas R -- Calcott, Brett -- Chen, Junqing -- Friedrich, Frank -- Fukui, Makiko -- Fujita, Mari -- Greve, Carola -- Grobe, Peter -- Gu, Shengchang -- Huang, Ying -- Jermiin, Lars S -- Kawahara, Akito Y -- Krogmann, Lars -- Kubiak, Martin -- Lanfear, Robert -- Letsch, Harald -- Li, Yiyuan -- Li, Zhenyu -- Li, Jiguang -- Lu, Haorong -- Machida, Ryuichiro -- Mashimo, Yuta -- Kapli, Pashalia -- McKenna, Duane D -- Meng, Guanliang -- Nakagaki, Yasutaka -- Navarrete-Heredia, Jose Luis -- Ott, Michael -- Ou, Yanxiang -- Pass, Gunther -- Podsiadlowski, Lars -- Pohl, Hans -- von Reumont, Bjorn M -- Schutte, Kai -- Sekiya, Kaoru -- Shimizu, Shota -- Slipinski, Adam -- Stamatakis, Alexandros -- Song, Wenhui -- Su, Xu -- Szucsich, Nikolaus U -- Tan, Meihua -- Tan, Xuemei -- Tang, Min -- Tang, Jingbo -- Timelthaler, Gerald -- Tomizuka, Shigekazu -- Trautwein, Michelle -- Tong, Xiaoli -- Uchifune, Toshiki -- Walzl, Manfred G -- Wiegmann, Brian M -- Wilbrandt, Jeanne -- Wipfler, Benjamin -- Wong, Thomas K F -- Wu, Qiong -- Wu, Gengxiong -- Xie, Yinlong -- Yang, Shenzhou -- Yang, Qing -- Yeates, David K -- Yoshizawa, Kazunori -- Zhang, Qing -- Zhang, Rui -- Zhang, Wenwei -- Zhang, Yunhui -- Zhao, Jing -- Zhou, Chengran -- Zhou, Lili -- Ziesmann, Tanja -- Zou, Shijie -- Li, Yingrui -- Xu, Xun -- Zhang, Yong -- Yang, Huanming -- Wang, Jian -- Wang, Jun -- Kjer, Karl M -- Zhou, Xin -- New York, N.Y. -- Science. 2014 Nov 7;346(6210):763-7. doi: 10.1126/science.1257570. Epub 2014 Nov 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Zoologisches Forschungsmuseum Alexander Koenig (ZFMK)/Zentrum fur Molekulare Biodiversitatsforschung (ZMB), Bonn, Germany. xinzhou@genomics.cn b.misof.zfmk@uni-bonn.de kjer@aesop.rutgers.edu wangj@genomics.cn. ; China National GeneBank, BGI-Shenzhen, China. BGI-Shenzhen, China. ; Zoologisches Forschungsmuseum Alexander Koenig (ZFMK)/Zentrum fur Molekulare Biodiversitatsforschung (ZMB), Bonn, Germany. Australian National Insect Collection, Commonwealth Scientific and Industrial Research Organization (Australia) (CSIRO), National Research Collections Australia, Canberra, ACT, Australia. ; Abteilung Arthropoda, Zoologisches Forschungsmuseum Alexander Koenig (ZFMK), Bonn, Germany. ; Zoologisches Forschungsmuseum Alexander Koenig (ZFMK)/Zentrum fur Molekulare Biodiversitatsforschung (ZMB), Bonn, Germany. ; Department of Entomology, Rutgers University, New Brunswick, NJ 08854, USA. ; Department of Biological Sciences, Rutgers University, Newark, NJ 08854, USA. ; Scientific Computing, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany. ; Institut fur Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum Jena, FSU Jena, Germany. ; Steinmann-Institut, Bereich Palaontologie, Universitat Bonn, Germany. ; 2. Zoologische Abteilung (Insekten), Naturhistorisches Museum Wien, Vienna, Austria. Department of Integrative Zoology, Universitat Wien, Vienna, Austria. ; Institut fur Spezifische Prophylaxe und Tropenmedizin, Medizinische Parasitologie, Medizinische Universitat Wien (MUW), Vienna, Austria. ; Department of Integrative Zoology, Universitat Wien, Vienna, Austria. ; Zoologisches Forschungsmuseum Alexander Koenig (ZFMK)/Zentrum fur Molekulare Biodiversitatsforschung (ZMB), Bonn, Germany. Sugadaira Montane Research Center/Hexapod Comparative Embryology Laboratory, University of Tsukuba, Japan. ; Manaaki Whenua Landcare Research, Auckland, New Zealand. ; Center for Advanced Modeling, Emergency Medicine Department, Johns Hopkins University, Baltimore, MD 21209, USA. ; BGI-Shenzhen, China. ; Biozentrum Grindel und Zoologisches Museum, Universitat Hamburg, Hamburg, Germany. ; Evolutionary Morphology Laboratory, Graduate School of Science and Engineering, Ehime University, Japan. ; Sugadaira Montane Research Center/Hexapod Comparative Embryology Laboratory, University of Tsukuba, Japan. ; Land and Water Flagship, CSIRO, Canberra, ACT, Australia. ; Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA. ; Entomology, Staatliches Museum fur Naturkunde Stuttgart (SMNS), Germany. ; Ecology Evolution and Genetics, Research School of Biology, Australian National University, Canberra, ACT, Australia. National Evolutionary Synthesis Center, Durham, NC 27705, USA. Department of Biological Sciences, Macquarie University, Sydney, Australia. ; Department fur Botanik und Biodiversitatsforschung, Universitat Wien, Vienna, Austria. ; Scientific Computing, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany. Natural History Museum of Crete, University of Crete, Post Office Box 2208, Gr-71409, Iraklio, and Biology Department, University of Crete, Iraklio, Crete, Greece. ; Department of Biological Sciences and Feinstone Center for Genomic Research, University of Memphis, Memphis, TN 38152, USA. ; Centro Universitario de Ciencias Biologicas y Agropecuarias, Centro de Estudios en Zoologia, Universidad de Guadalajara, Zapopan, Jalisco, Mexico. ; Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities, Garching, Germany. ; Institute of Evolutionary Biology and Ecology, Zoology and Evolutionary Biology, University of Bonn, Bonn, Germany. ; Department of Life Sciences, The Natural History Museum London, London, UK. ; Abteilung Entomologie, Biozentrum Grindel und Zoologisches Museum, Universitat Hamburg, Hamburg, Germany. ; Australian National Insect Collection, Commonwealth Scientific and Industrial Research Organization (Australia) (CSIRO), National Research Collections Australia, Canberra, ACT, Australia. ; Scientific Computing, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany. Fakultat fur Informatik, Karlsruher Institut fur Technologie, Karlsruhe, Germany. ; California Academy of Sciences, San Francisco, CA 94118, USA. ; Department of Entomology, College of Natural Resources and Environment, South China Agricultural University, China. ; Sugadaira Montane Research Center/Hexapod Comparative Embryology Laboratory, University of Tsukuba, Japan. Yokosuka City Museum, Yokosuka, Kanagawa, Japan. ; Department of Entomology, North Carolina State University, Raleigh, NC 27695, USA. ; Systematic Entomology, Hokkaido University, Sapporo, Japan. ; BGI-Shenzhen, China. Department of Biology, University of Copenhagen, Copenhagen, Denmark. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia. Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China. Department of Medicine, University of Hong Kong, Hong Kong. xinzhou@genomics.cn b.misof.zfmk@uni-bonn.de kjer@aesop.rutgers.edu wangj@genomics.cn. ; Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08854, USA. xinzhou@genomics.cn b.misof.zfmk@uni-bonn.de kjer@aesop.rutgers.edu wangj@genomics.cn. ; China National GeneBank, BGI-Shenzhen, China. BGI-Shenzhen, China. xinzhou@genomics.cn b.misof.zfmk@uni-bonn.de kjer@aesop.rutgers.edu wangj@genomics.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25378627" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Genetic Code ; Genome, Insect ; Genomics ; Insect Proteins/*classification/genetics ; Insects/*classification/genetics ; *Phylogeny ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...