Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: COMBINATION ; Germany ; TOOL ; GENE ; PROTEIN ; PROTEINS ; METABOLISM ; MOLECULES ; MECHANISM ; mechanisms ; TOLERANCE ; DISCOVERY ; MOLECULE ; WATER ; DAMAGE ; bioinformatics ; MAMMALIAN-CELLS ; STABILITY ; review ; regulation ; HEAT-SHOCK-PROTEIN ; LIFE ; development ; cryopreservation ; BACTERIA ; biotechnology ; STATE ; CHAPERONE ACTIVITY ; WELL ; MILNESIUM-TARDIGRADUM ; RICHTERSIUS-CORONIFER ; ADORYBIOTUS-CORONIFER ; Anhydrobiosis ; ARTEMIA-FRANCISCANA ; Biostabilization ; Cryobanking ; Cryoprotectant ; Cryptobiosis ; DESICCATION TOLERANCE ; FRESH-WATER SPONGE ; SHOCK/ALPHA-CRYSTALLIN PROTEIN ; STRESS-PROTEIN
    Abstract: Certain organisms found across a range of taxa, including bacteria, yeasts, plants and many invertebrates such as nematodes and tardigrades are able to survive almost complete loss of body water. The dry organisms may remain in this state. which is known as anhydrobiosis. for decades without apparent damage. When water again becomes available, they rapidly rehydrate and resume active life. Research in anhydrobiosis has focused mainly on sugar metabolism and stress proteins. Despite the discovery of various molecules which are involved in desiccation and water stress, knowledge of the regulatory network governing the stability of the cellular architecture and the metabolic machinery during dehydration is still fragmentary and not well understood. A combination of transcriptional, proteomic and metabolic approaches with bioinformatics tools can provide a better understanding of gene regulation that underlie the biological functions and physiology related to anhydrobiosis. The development of this concept will raise exciting possibilities and techniques for the preservation and stabilization of biological materials in the dry state. (c) 2009 Elsevier Inc. All rights reserved
    Type of Publication: Journal article published
    PubMed ID: 19472511
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: CELLS ; EXPRESSION ; Germany ; CLONING ; GENE ; HYBRIDIZATION ; PROTEIN ; DOMAIN ; IN-SITU ; EVOLUTION ; innate immunity ; LECTIN ; DOMAINS ; in situ hybridization ; Hydractinia ; neuron ; CNIDARIAN ; invertebrate immunity ; TACHYPLEUS-TRIDENTATUS
    Abstract: Tachylectin-related proteins are a recently characterized group of pattern recognition molecules, functioning in the innate immunity of various animals, from the ancient sponges to vertbrates. Tachylectins are characterized by six internal tandem repeats forming beta-propeller domains. We have identified and characterized a tachylectin-related gene in the colonial marine hydroid, Hydractinia echinata. The predicted gene product, termed CTRN, contained an N-terminal signal peptide and had a well-conserved tachylectin-like structure. RT-PCR analyses revealed only post-metamorphic expression while no mRNA was detected during embryonic development or in planula larvae. Exposure of colonies to LPS under conditions known to activate an immune response in Hydractinia did not result in upregulation of the gene. In situ hybridization analysis of metamorphosed animals detected CTRN transcripts only in a small subpopulation of neurons and their precursor cells, localized in a ring-like structure around the mouth of polyps. The same ring-like structure of CTRN expressing neurons was also observed in young polyp buds, predicting the position of the future mouth. This type of expression pattern can hardly be attributed to an immunerelevant gene. Thus, despite high structural similarity to tachylectins, this cnidarian member of this group seems to be an exception to all other tachylectins identified so far as it seems to have no function in cnidarian innate immunity. (c) 2005 Elsevier Ltd. All rights reserved
    Type of Publication: Journal article published
    PubMed ID: 15975655
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: EXPRESSION ; Germany ; CLASSIFICATION ; CDNA ; ENZYMES ; HYBRIDIZATION ; TISSUE ; FAMILY ; primary ; TISSUES ; STAGE ; IN-SITU ; RT-PCR ; IMMUNITY ; HOST-DEFENSE ; in situ hybridization ; DEFENSE ; pathogen ; PATHOGENS ; ECHINATA ; Hydractinia ; HYDROID HYDRACTINIA ; chitin ; allorecognition ; GLYCOSYL HYDROLASES ; periderm
    Abstract: Chitinases are enzymes that degrade chitin, the second most abundant polymer in nature. They are ubiquitous among living organisms where they play a role in development, food-digestion and innate immunity. We have cloned and characterized the first cnidarian chitinase cDNA from the hydroid Hydractinia. The Hydractinia chitinase exhibits a typical secreted family 18 hydrolases primary structure. In situ hybridization and RT-PCR experiments showed that it is exclusively expressed in ectodermal tissues of the animal, only following metamorphosis while undetectable in embryonic and larval stages. Most prominent expression was observed in the stolonal compartment of colonies, structures that are covered by a chitinous periderm. Chitinase mRNA was detected in new branching points along stolons and in hyperplastic stolons indicating a role of the enzyme in pattern formation and allorecognition. It was also expressed in polyps where it was mostly restricted to their basal portion. This expression pattern suggests that HyChitI also fulfills a role in host defense, probably against fungal and nematode pathogens. Endodermal expression of HyChitI has never been observed, suggesting that the enzyme does not participate in food-digestion. (C) 2004 Elsevier Ltd. All rights reserved
    Type of Publication: Journal article published
    PubMed ID: 15236928
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: IONIZING-RADIATION ; Germany ; MODEL ; INFORMATION ; GENE ; GENES ; DNA ; TOLERANCE ; SEQUENCE ; SEQUENCES ; WATER ; IDENTIFICATION ; CHROMATIN ; HEAT-SHOCK ; STRESS ; genetics ; DAMAGE ; DATABASE ; CAENORHABDITIS-ELEGANS ; assembly ; TRANSLATION ; EXPRESSED SEQUENCE TAGS ; transcriptome ; CONTROLLED TUMOR PROTEIN ; radiation tolerance ; Genetic ; MILNESIUM-TARDIGRADUM ; RICHTERSIUS-CORONIFER ; ADORYBIOTUS-CORONIFER ; DESICCATION TOLERANCE ; Species ; CONTRIBUTE ; EST ; ACID-BINDING PROTEINS ; FREEZE TOLERANCE ; POLYPEDILUM-VANDERPLANKI ; Sequence information
    Abstract: Background: The phenomenon of desiccation tolerance, also called anhydrobiosis, involves the ability of an organism to survive the loss of almost all cellular water without sustaining irreversible damage. Although there are several physiological, morphological and ecological studies on tardigrades, only limited DNA sequence information is available. Therefore, we explored the transcriptome in the active and anhydrobiotic state of the tardigrade Milnesium tardigradum which has extraordinary tolerance to desiccation and freezing. In this study, we present the first overview of the transcriptome of M. tardigradum and its response to desiccation and discuss potential parallels to stress responses in other organisms. Results: We sequenced a total of 9984 expressed sequence tags (ESTs) from two cDNA libraries from the eutardigrade M. tardigradum in its active and inactive, anhydrobiotic (tun) stage. Assembly of these ESTs resulted in 3283 putative unique transcripts, whereof similar to 50% showed significant sequence similarity to known genes. The resulting unigenes were functionally annotated using the Gene Ontology (GO) vocabulary. A GO term enrichment analysis revealed several GOs that were significantly underrepresented in the inactive stage. Furthermore we compared the putative unigenes of M. tardigradum with ESTs from two other eutardigrade species that are available from public sequence databases, namely Richtersius coronifer and Hypsibius dujardini. The processed sequences of the three tardigrade species revealed similar functional content and the M. tardigradum dataset contained additional sequences from tardigrades not present in the other two. Conclusions: This study describes novel sequence data from the tardigrade M. tardigradum, which significantly contributes to the available tardigrade sequence data and will help to establish this extraordinary tardigrade as a model for studying anhydrobiosis. Functional comparison of active and anhydrobiotic tardigrades revealed a differential distribution of Gene Ontology terms associated with chromatin structure and the translation machinery, which are underrepresented in the inactive animals. These findings imply a widespread metabolic response of the animals on dehydration. The collective tardigrade transcriptome data will serve as a reference for further studies and support the identification and characterization of genes involved in the anhydrobiotic response
    Type of Publication: Journal article published
    PubMed ID: 20226016
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: EXPRESSION ; Germany ; MODEL ; INFORMATION ; SYSTEM ; GENE ; GENE-EXPRESSION ; GENOME ; PROTEIN ; PROTEINS ; RESOLUTION ; MECHANISM ; FAMILY ; DOMAIN ; mechanisms ; TOLERANCE ; CYCLE ; SEQUENCE ; IDENTIFICATION ; gene expression ; HEAT-SHOCK ; mass spectrometry ; SPECTROMETRY ; DATABASE ; MASS-SPECTROMETRY ; PROJECT ; PROTEOMICS ; PROTEIN IDENTIFICATION ; ARABIDOPSIS-THALIANA ; HIGH-RESOLUTION ; ANNOTATION ; SCIENCE ; LIFE ; MOLECULAR-MECHANISMS ; GLUTATHIONE S-TRANSFERASES ; Genetic ; protein extraction ; MILNESIUM-TARDIGRADUM ; RICHTERSIUS-CORONIFER ; ARTEMIA-FRANCISCANA ; DESICCATION TOLERANCE ; EST ; Sequence information ; Molecular mechanisms ; BRINE SHRIMP ; TREHALOSE
    Abstract: Background: Tardigrades are small, multicellular invertebrates which are able to survive times of unfavourable environmental conditions using their well-known capability to undergo cryptobiosis at any stage of their life cycle. Milnesium tardigradum has become a powerful model system for the analysis of cryptobiosis. While some genetic information is already available for Milnesium tardigradum the proteome is still to be discovered. Principal Findings: Here we present to the best of our knowledge the first comprehensive study of Milnesium tardigradum on the protein level. To establish a proteome reference map we developed optimized protocols for protein extraction from tardigrades in the active state and for separation of proteins by high resolution two-dimensional gel electrophoresis. Since only limited sequence information of M. tardigradum on the genome and gene expression level is available to date in public databases we initiated in parallel a tardigrade EST sequencing project to allow for protein identification by electrospray ionization tandem mass spectrometry. 271 out of 606 analyzed protein spots could be identified by searching against the publicly available NCBInr database as well as our newly established tardigrade protein database corresponding to 144 unique proteins. Another 150 spots could be identified in the tardigrade clustered EST database corresponding to 36 unique contigs and ESTs. Proteins with annotated function were further categorized in more detail by their molecular function, biological process and cellular component. For the proteins of unknown function more information could be obtained by performing a protein domain annotation analysis. Our results include proteins like protein member of different heat shock protein families and LEA group 3, which might play important roles in surviving extreme conditions. Conclusions: The proteome reference map of Milnesium tardigradum provides the basis for further studies in order to identify and characterize the biochemical mechanisms of tolerance to extreme desiccation. The optimized proteomics workflow will enable application of sensitive quantification techniques to detect differences in protein expression, which are characteristic of the active and anhydrobiotic states of tardigrades
    Type of Publication: Journal article published
    PubMed ID: 20224743
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 64 (1990), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract The effect of the external cations Na+ and Ca2+ on polymorphonuclear chemiluminescence was investigated. Both Ca2+ in the range of 0.2–2 mM and Na+ in the range of 114–143 mM showed a dose dependent increase in polymorphonuclear chemiluminescence, irrespective of the concurrent increase in osmolality. The Na+/H+ antiport inhibitor Amiloride decreased the response significantly. These effects were observed using buffers commonly used for chemiluminescence studies and indicate the importance of defining the Ca2+ and Na+ composition of the buffers used in chemiluminescence assays.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Clinical Biochemistry 27 (1994), S. 214 
    ISSN: 0009-9120
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Medicine
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Clinical Biochemistry 26 (1993), S. 144 
    ISSN: 0009-9120
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Medicine
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...