Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Lactate dehydrogenase ; Vascular smooth muscle cells ; Hypoxia ; Cobalt ; cAMP ; Oxygen sensor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract O2 plays a dominant role in the metabolism and viability of cells; changes in O2 supply lead to many physiological responses in the cell. Recent reports have shown that hypoxia induces the transcription of a number of genes, among them those for the glycolytic enzymes. We have investigated signalling events that may lead to enhanced activity of lactate dehydrogenase (LDH) in cultured vascular smooth muscle (VSM) cells derived from rat aorta, grown under hypoxic conditions (1% versus 20% O2). LDH was chosen because this enzyme exhibits one of the largest increases in activity among the glycolytic enzymes after hypoxic stimulation of cells. Hypoxic exposure of VSM cells for 24 h resulted in a 2-fold increase in LDH activity and in a 2.5-fold increase in intracellular cAMP levels. Agents that activate adenylate cyclase, such as forskolin, cholera toxin and 1-methyl-3-isobutylxanthine (IBMX), and thus increase cAMP production, significantly induced LDH activity. Moreover, induction of LDH activity by hypoxia was prevented in the presence of the protein kinase A inhibitor N-[2-(methyl-amino)ethyl]-5-isoquinolinsulphonamide dihydrochloride (H-8), and the cyclooxygenase inhibitor indomethacin. In contrast to the cAMP-stimulating agents, stable cGMP analogues (dibutyryl-cGMP, 8 bromo-cGMP), activators of protein kinase C [12-O tetradecanoylphorbol-13-acetate (TPA), and 1-oleoyl-2 acetyl-glycerol (OAG), and the calcium ionophore ionomycin did not alter LDH activity in VSM cells kept at 20% O2. A dose-dependent increase in LDH activity was also observed in normoxic cells exposed to cobalt chloride (50–200 μM), indicating that a metal binding protein might be involved in this signalling cascade. This transition metal does not seem to act by interfering with cellular oxidative phosphorylation, because 10−5–10−4M cyanide, a potent inhibitor of cell respiration, had no effect on LDH activity, as has been also shown for the production of erythropoietin (EPO). Thus, we suggest that the phosphorylation potential is not crucial to the O2-sensing mechanism regulating LDH activity and EPO production. Our results suggest that the “metabolic indicator” leading to an enhanced LDH activity under hypoxic conditions in VSM cells is represented by cAMP.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The haematopoietic growth factor erythropoietin is the primary regulator of mammalian erythropoiesis and is produced by the kidney and the liver in an oxygen-dependent manner. We and others have recently demonstrated erythropoietin gene expression in the rodent brain. In this work, we show that cerebral erythropoietin gene expression is not restricted to rodents but occurs also in the primate brain. Erythropoietin mRNA was detected in biopsies from the human hippocampus, amygdala and temporal cortex and in various brain areas of the monkey Macaca mulatta. Exposure to a low level of oxygen led to elevated erythropoietin mRNA levels in the monkey brain, as did anaemia in the mouse brain. In addition, erythropoietin receptor mRNA was detected in all brain biopsies tested from man, monkey and mouse. Analysis of primary cerebral cells isolated from newborn mice revealed that astrocytes, but not microglia cells, expressed erythropoietin. When incubated at 1% oxygen, astrocytes showed 〉l OO-fold time-dependent erythropoietin mRNA accumulation, as measured with the quantitative reverse transcription-polymerase chain reaction. The specificity of hypoxic gene induction in these cells was confirmed by quantitative Northern blot analysis showing hypoxic up-regulation of mRNA encoding the vascular endothelial growth factor, but not of other genes. These findings demonstrate that erythropoietin and its receptor are expressed in the brain of primates as they are in rodents, and that, at least in mice, primary astrocytes are a source of cerebral erythropoietin expression which can be up-regulated by reduced oxygenation.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...