Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 117 (2002), S. 3027-3039 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: In this paper we present a new approach to simulation methods for classical statistical mechanics relying on a field-theoretical formalism. It is based on applying the complex Hubbard–Stratonovich transformation to the canonical and grand-canonical partition function, which allows one to reexpress their particle representation in terms of a functional integral over a fluctuating auxiliary field. The thermodynamic averages from the resulting field representations can then be calculated with a conventional Monte Carlo algorithm. We explored the applicability of the auxiliary field methodology for both the canonical and grand-canonical ensemble using a system of particles interacting through a purely repulsive Gaussian pair potential in a broad range of external parameters. In the grand-canonical case this technique represents an alternative to standard grand-canonical Monte Carlo methods. Generally providing a framework for simulating classical particle systems within a continuum formalism can be useful for multiscale modeling where the field or continuum description naturally appears within quantum mechanics on smaller length scales and within classical mechanics on larger ones.© 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...