Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: Yeast ; Transcription ; Mitochondria ; RNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In yeast (S. cerevisiae) the stringent response is known to include rapid, selective, and severe transcriptional curtailment for genes specifying cytoplasmic rRNAs and r-proteins. We have shown that transcription of the mitochondrial 21S rRNA gene is also congruently and selectively curtailed during the yeast stringent response. Using an in vitro transcription assay with intact organelles from both ϱ+ and ϱ− strains, we show here that the mitochondrial stringent response includes not only transcription of the 21S and 16S rRNA genes, but also that of organellar genes specifying non-mitoribosome-related products. Stringent organellar transcriptional curtailment is identical when cells are starved for a required (marker) amino acid or when they are subjected to nutritional downshift, and the relative level of that transcriptional curtailment following either perturbation is the same in cells growing on fermentative (repressing) or purely respiratory carbon sources. These results confirm that the mechanism governing mitochondrial gene expression during a stringent response is specified outside the organelle, and they show that this transcriptional control mechanism is not immediately subject to glucose repression. In all strains examined, stringent organellar gene expression requires a mitochondrial promoter, suggesting that the regulatory mechanism which functions during the stringent response operates primarily at transcriptional initiation.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Mitochondria ; Transcriptional regulation ; Protein phosphorylation ; Stringent response
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Using various mutant strains and nutritional manipulations, we investigated a potential role for cyclic AMP (cAMP) in the regulation of mitochondrial (mt) gene expression in the yeast Saccharomyces cerevisiae. In RAS mutants known to have either abnormally low or high cellular levels of this nucleotide, we show that both mt transcription rate and overall mt transcript levels vary directly with cellular cAMP levels. We further show that nutritional downshift of actively growing cells causes a severe, rapid fall in cAMP levels, and that this fall is concomitant with the stringent mt transcriptional curtailment that we and others have previously shown to follow this nutritional manipulation. In in vitro mt transcription assays using intact organelles from downshifted and actively growing cells, stringently curtailed mt gene expression can be restored to 75% of control levels by addition of cAMP to the assay mix. Consistent with these observations a RAS2 vall9mutant strain, which cannot adjust cAMP levels in response to external stimuli, shows no mt stringent response following nutritional downshift. We also demonstrate a significant but transient increase in both mt transcript levels and mt transcription rate following shift of actively respiring wild-type cells to glucose-based medium, a manipulation known to cause a short-lived pulse of cAMP in yeast; similar manipulation of the RAS2 vall9mutant strain generates no such response. Taken together all these observations indicate that cellular cAMP levels are involved in the regulation of mt transcription in yeast. Moreover, the lack of a mt stringent transcriptional response following downshift in a strain in which the BCY1 gene had been insertionally inactivated suggests that cAMP may influence mt transcription via a mt cAMP-dependent protein kinase. These results link mt gene expression with mechanisms governing growth control and nutrient adaptation in yeast, and they provide a means by which nit gene expression might be coordinated with that of related nuclear genes.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...