Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Rats exposed to a low-light, low-noise, novel environment exhibit differences in individual locomotor response to the novelty stressor. The categorization of rats in a locomotor screening procedure as low- (LR) or high-responders (HR), where LRs are in the low locomotor range while HRs belong to the high locomotor range, is significant in that HRs show higher activity in mesencephalic dopaminergic projection neurons, and also show a higher propensity to self-administer psychostimulants and other drugs of abuse compared with LRs. In this study, we examined the neurobiological basis of dopaminergic hyperactivity by comparing in HRs and LRs the steady-state differences in regulatory inputs to mesencephalic (substantia nigra and ventral tegmental area: VTA) dopaminergic neurons. In particular, using in situ hybridization, we studied levels of mRNA for tyrosine hydroxylase (TH) and cholecystokinin (CCK) in the mesencephalon, and for preprodynorphin (DYN), preproenkephalin (PPE), and preprotachykinin (PPT) in the striatum and nucleus accumbens (Acb). We also evaluated TH levels by radioimmunocytochemistry (TH-RIC) in striatal, accumbal and mesencephalic regions. HRs versus LRs had lower levels of neurochemicals belonging to the intrinsic inhibitory input to dopaminergic neurons in the VTA, e.g. lower TH-RIC (–25%) and CCK-mRNA (–48%). In contrast, HRs showed higher levels of parameters belonging to extrinsic facilitating inputs, e.g. higher PPE-mRNA (+ 37%). In addition, HRs had higher DYN-mRNA in Acb (+ 61%), which has been shown to be positively correlated with higher dopaminergic activity. These results enhance our knowledge of the neurobiological correlates of individual rats' propensities to develop drug-intake and provide some putative mechanisms for the dopaminergic hyperactivity that characterizes drug-prone animals.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 286 (1980), S. 150-151 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Fifteen male Sprague-Dawley rats (300-350 g) received, under ketamine anaesthesia (150mg kg"1 intraperitoneally (i.p.)), bilateral stainless steel guide cannulae (0.65 mm) aimed 6.5 mm above the A10 cell bodies region. Stereotaxic coordinates were: 4 mm posterior to the bregma, 0.5 mm lateral to ...
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Table 1 Effects of (+)amphetamine injections (2 mg per kg, i.p.) on the locomotor activity of sham-operated rats and rats with VMT-A10 lesions Locomotor activity (counts) Time for maximal activation (min) Groups 1st 10 min 1st h 2nd h N = 6 Control 131±24 ...
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Acute dependence, defined as a precipitation of somatic signs by an antagonist, may occur after a single administration of an opiate drug. Because hyperalgesia is a consistent sign of the withdrawal syndrome, we tested the effectiveness of heroin, an opiate used by addicts, to induce pain facilitation even after a first exposure to the drug. In opiate-naive rats, subcutaneous injection of heroin induced analgesia followed by allodynia, a decrease in pain threshold. This latter phenomenon was observed in the absence of noxious stimuli and lasted several days. An N-methyl-d-aspartate (NMDA) receptor antagonist, MK-801 prevented such long-lasting allodynia. These results suggest that allodynia is an early sign reflecting neural plasticity associated with the development of dependence.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Opioid peptides, through μ and δ receptors, play an important part in reward. In contrast, the role of κ receptors is more controversial. We examined the possible positive reinforcing effects of a selective κ agonist, RU 51599, by studying intravenous self-administration in the rat. The effect of RU 51599 on dopamine release in the nucleus accumbens was also studied, as opioids and dopamine seem to interact in the mediation of reward. The behavioural and dopaminergic effects of RU 51599 were compared with those of the μ agonist heroin. Rats self-administered both RU 51599 (6.5, 20 and 60 μg/inj) and heroin (30 μg/inj) at low ratio requirement. When the ratio requirement, i.e. the number of responses necessary to receive one drug infusion, was increased, self-administration of RU 51599 rapidly extinguished, whereas self-administration of heroin was maintained. Intravenous infusion of RU 51599 (100, 200 and 400 μg) dose-dependently decreased (25, 30 and 40%, respectively) extracellular concentrations of dopamine, as measured by means of microdialysis in freely moving rats. In contrast, heroin increased accumbens dopamine (130% over baseline). These results indicate that κ receptors, similarly to μ ones, can mediate positive reinforcing effects of opioid peptides. However, the strength of the reinforcement is very low for κ receptors. This suggests that changes in accumbens dopamine do not correlate with the capacity of a stimulus to induce reward or aversion. In contrast, a parallel seems to exist between an increase in accumbens dopamine and the drive to reach or obtain a positive reinforcer.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Stressful experiences, glucocorticoids hormones and dopaminergic neurons seems to interact in determining a higher propensity to develop drug abuse. In this report, we studied the acute interaction between these three factors. For this purpose, we compared stress-induced dopamine release in intact rats and in rats in which stress-induced corticosterone secretion was experimentally blocked. Ten-minute tail-pinch was used as a stressor and dopamine release estimated in the nucleus accumbens by using the microdialysis technique. Individual differences were also taken into account by comparing rats identified as either predisposed (HRs) or resistant (LRs) to develop self-administration of drugs of abuse, on the basis of their locomotor response to novelty. It was found that suppression of stress-induced corticosterone secretion significantly decreased stress-induced dopamine release. However, such an effect greatly differed between HR and LR rats. When corticosterone secretion was intact HR animals had a higher and longer dopamine release in response to stress than LRs. The blockade of stress-induced corticosterone secretion selectively reduced the dopaminergic response of HRs that did not differ from LRs anymore. These findings strength the idea that glucocorticoids could be involved in determining propensity to develop drug self-administration. In particular, these hormones could play a role in determining the higher dopaminergic activity that characterizes drug proned individuals.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2072
    Keywords: Key words Microdialysis ; Haloperidol ; 8-OH-DPAT ; Ritanserin ; Catalepsy ; Dopamine ; Serotonin ; Striatum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In this study, both catalepsy and changes in extracellular levels of striatal dopamine (DA) and dihydroxyphenyl acetic acid (DOPAC) induced by the typical neuroleptic haloperidol (HAL) were simultaneously assessed, using intracerebral microdialysis in freely moving rats, in the presence of either the 5-HT1A agonist 8-OH-DPAT or the 5-HT2A/C antagonist ritanserin. HAL (1 mg/kg, SC) elicited a strong cataleptic state, reaching its maximal intensity (about 240 s) 2 h after the drug administration. This effect was paralleled by a long-lasting enhancement of striatal DA and DOPAC extracellular levels, reaching 230 and 350% of basal values, respectively. 8-OH-DPAT (0.1 mg/kg, SC) given 2.5 h after, and ritanserin (0.63 and 1.25 mg/kg, IP), given 15 min prior to HAL, significantly reduced the neuroleptic-induced catalepsy. However, both 5-HT agents failed to modify basal DA and DOPAC striatal outflow as well as the stimulatory effect of HAL on these parameters. It can thus be concluded that the anticataleptic effect of these compounds is not related to an alteration of DA release within the striatum.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...