Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: DISTINCT ; VARIANTS ; AMPLIFICATION ; chemotherapy ; CHILDHOOD MEDULLOBLASTOMA ; outcome prediction ; SUBGROUPS ; TP53 mutation ; CRANIOSPINAL RADIOTHERAPY ; WNT/WINGLESS PATHWAY
    Abstract: This study aimed to prospectively evaluate clinical, histopathological and molecular variables for outcome prediction in medulloblastoma patients. Patients from the HIT2000 cooperative clinical trial were prospectively enrolled based on the availability of sufficient tumor material and complete clinical information. This revealed a cohort of 184 patients (median age 7.6 years), which was randomly split at a 2:1 ratio into a training (n = 127), and a test (n = 57) dataset in order to build and test a risk score for this population. Independent validation was performed in a non-overlapping cohort (n = 83). All samples were subjected to thorough histopathological investigation, CTNNB1 mutation analysis, quantitative PCR, MLPA and FISH analyses for cytogenetic variables, and methylome analysis. By univariable analysis, clinical factors (M-stage), histopathological variables (large cell component, endothelial proliferation, synaptophysin pattern), and molecular features (chromosome 6q status, MYC amplification, subgrouping) were found to be prognostic. Molecular consensus subgrouping (WNT, SHH, Group 3, Group 4) was validated as an independent feature to stratify patients into different risk groups. When comparing methods for the identification of WNT-driven medulloblastoma, this study identified CTNNB1 sequencing and methylation profiling to most reliably identify these patients. After removing patients with particularly favorable (CTNNB1 mutation, extensive nodularity) or unfavorable (MYC amplification) markers, a risk score for the remaining "intermediate molecular risk" population dependent on age, M-stage, pattern of synaptophysin expression, and MYCN copy-number status was identified, with speckled synaptophysin expression indicating worse outcome. Test and independent validation of the score confirmed significant discrimination of patients by risk profile. Methylation subgrouping and CTNNB1 mutation status represent robust tools for the risk stratification of medulloblastoma. A simple clinico-pathological risk score was identified, which was confirmed in a test set and by independent clinical validation.
    Type of Publication: Journal article published
    PubMed ID: 24791927
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: CANCER ; GENE ; GENOME ; MUTATIONS ; STEM-CELLS ; ZINC-FINGER PROTEIN ; T-CELL LYMPHOMAGENESIS ; MYC ; SUPER-ENHANCERS ; SUBGROUP
    Abstract: Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.
    Type of Publication: Journal article published
    PubMed ID: 25043047
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Abstract: Purpose To assess an intensified treatment in the context of clinical and biologic risk factors in metastatic medulloblastoma. Patients and Methods Patients (4 to 21 years old, diagnosed between 2001 and 2007) received induction chemotherapy, dose-escalated hyperfractionated craniospinal radiotherapy, and maintenance chemotherapy. Subgroup status and other biologic parameters were assessed. Results In 123 eligible patients (median age, 8.2 years old; median follow-up, 5.38 years), 5-year event-free survival (EFS) and overall survival (OS) were 62% (95% CI, 52 to 72) and 74% (95% CI, 66 to 82), respectively. OS was superior compared with the precedent HIT '91 trial. The 5-year EFS and OS were both 89% (95% CI, 67 to 100) for desmoplastic/nodular (n = 11), 61% (95% CI, 51 to 71) and 75% (95% CI, 65 to 85) for classic (n = 107), and 20% (95% CI, 0 to 55) and 40% (95% CI, 0 to 83) for large-cell/anaplastic (n = 5) medulloblastoma ( P 〈 .001 for EFS; P = .001 for OS). Histology (hazard ratio, 0.19 for desmoplastic/nodular and 45.97 for large-cell/anaplastic medulloblastoma) and nonresponse to the first chemotherapy cycle (hazard ratio, 1.97) were independent risk factors (EFS). Among 81 (66%) patients with tumor material, 5-year EFS and OS differed between low-risk (wingless [WNT], n = 4; both 100%), high-risk ( MYCC/ MYCN amplification; n = 5, both 20%), and intermediate-risk patients (neither; n = 72, 63% and 73%, respectively). Survival rates were different between molecular subgroups (WNT, n = 4; sonic hedgehog [SHH; n = 4]; group 4 [n = 41]; group 3 with [n = 3] or without [n = 17] MYCC/MYCN amplification; P 〈 .001). All cases showed p53 immuno-negativity. There was no association between patients with nonresponding tumors to induction chemotherapy and WNT ( P = .143) or MYCC/MYCN status ( P = .075), histologic subtype ( P = .814), or molecular subtype ( P = .383), as assessed by Fisher's exact test. Conclusion This regimen was feasible and conferred overall favorable survival. Our data confirm the relevance of subgroup status and biologic parameters (WNT/ MYCC/ MYCN status) in a homogeneous prospective trial population, and show that metastatic group 3 patients do not uniformly have poor outcomes. Biologic subgroup, MYCC/ MYCN status, response to induction chemotherapy, and histologic subtype may serve for improved treatment stratification.
    Type of Publication: Journal article published
    PubMed ID: 27863192
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: CENTRAL-NERVOUS-SYSTEM ; LONG-TERM SURVIVORS ; HIGH-DOSE CHEMOTHERAPY ; CONFORMAL RADIATION-THERAPY ; LOW-GRADE GLIOMA ; CHILDRENS ONCOLOGY GROUP ; YOUNG-ADULT SURVIVORS ; CISPLATIN-INDUCED OTOTOXICITY ; PLATINUM-INDUCED OTOTOXICITY ; STANDARD-RISK MEDULLOBLASTOMA
    Abstract: BACKGROUND: Tumours of the central nervous system (CNS) are the most frequent solid tumours and the second most frequent type of cancer in children and adolescents. Overall survival has continuously improved in Germany, since an increasing number of patients have been treated according to standardised, multicentre, multimodal treatment recommendations, trials of the German Paediatric Brain Tumour Consortium (HIT-Network) or the International Society of Paediatric Oncology-Europe (SIOP-E) during the last decades. Today, two out of three patients survive. At least 8000 long-term childhood brain tumour survivors (CBTS) are currently living in Germany. They face lifelong disease- and treatment-related late effects (LE) and associated socioeconomic problems more than many other childhood cancer survivors (CCS). METHOD: We review the LE and resulting special needs of this particular group of CCS. RESULTS: Despite their increasing relevance for future treatment optimisation, neither the diversity of chronic and cumulative LE nor their pertinent risk factors and subsequent impact on quality of survival have yet been comprehensively addressed for CBTS treated according to HIT- or SIOP-E-protocols. Evidence-based information to empower survivors and stakeholders, as well as medical expertise to manage their individual health care, psychosocial and educational/vocational needs must still be generated and established. CONCLUSION: The establishment of a long-term research- and care network in Germany shall contribute to a European platform, that aims at optimising CBTSs' transition into adulthood as resilient individuals with high quality of survival including optimal levels of activity, participation and acceptance by society.
    Type of Publication: Journal article published
    PubMed ID: 26278499
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Abstract: Background.: Pineoblastoma is a rare pineal region brain tumor. Treatment strategies have reflected those for other malignant embryonal brain tumors. Patients and Methods.: Original prospective treatment and outcome data from international trial groups were pooled. Cox regression models were developed considering treatment elements as time-dependent covariates. Results.: Data on 135 patients with pineoblastoma aged 0.01-20.7 (median 4.9) years were analyzed. Median observation time was 7.3 years. Favorable prognostic factors were age 〉/=4 years (hazard ratio [HR] for progression-free survival [PFS] 0.270, P 〈 .001) and administration of radiotherapy (HR for PFS 0.282, P 〈 .001). Metastatic disease (HR for PFS 2.015, P = .006), but not postoperative residual tumor, was associated with unfavorable prognosis. In 57 patients 〈4 years old, 5-year PFS/overall survival (OS) were 11 +/- 4%/12 +/- 4%. Two patients survived after chemotherapy only, while 3 of 16 treated with craniospinal irradiation (CSI) with boost, and 3 of 5 treated with high-dose chemotherapy (HDCT) and local radiotherapy survived. In 78 patients aged 〉/=4 years, PFS/OS were 72 +/- 7%/73 +/- 7% for patients without metastases, and 50 +/- 10%/55 +/- 10% with metastases. Seventy-three patients received radiotherapy (48 conventionally fractionated CSI, median dose 35.0 [18.0-45.0] Gy, 19 hyperfractionated CSI, 6 local radiotherapy), with (n = 68) or without (n = 6) chemotherapy. The treatment sequence had no impact; application of HDCT had weak impact on survival in older patients. Conclusion.: Survival is poor in young children treated without radiotherapy. In these patients, combination of HDCT and local radiotherapy may warrant further evaluation in the absence of more specific or targeted treatments. CSI combined with chemotherapy is effective for older non-metastatic patients.
    Type of Publication: Journal article published
    PubMed ID: 28011926
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    facet.materialart.
    facet.materialart.
    German Medical Science GMS Publishing House; Düsseldorf
    In:  60th Annual Meeting of the German Society for Neuropathology and Neuroanatomy (DGNN); 20150826-20150828; Berlin; DOC15dgnnP49 /20150825/
    Publication Date: 2015-08-26
    Keywords: ddc: 610
    Language: English
    Type: conferenceObject
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-07-22
    Description: Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201514/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201514/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Northcott, Paul A -- Lee, Catherine -- Zichner, Thomas -- Stutz, Adrian M -- Erkek, Serap -- Kawauchi, Daisuke -- Shih, David J H -- Hovestadt, Volker -- Zapatka, Marc -- Sturm, Dominik -- Jones, David T W -- Kool, Marcel -- Remke, Marc -- Cavalli, Florence M G -- Zuyderduyn, Scott -- Bader, Gary D -- VandenBerg, Scott -- Esparza, Lourdes Adriana -- Ryzhova, Marina -- Wang, Wei -- Wittmann, Andrea -- Stark, Sebastian -- Sieber, Laura -- Seker-Cin, Huriye -- Linke, Linda -- Kratochwil, Fabian -- Jager, Natalie -- Buchhalter, Ivo -- Imbusch, Charles D -- Zipprich, Gideon -- Raeder, Benjamin -- Schmidt, Sabine -- Diessl, Nicolle -- Wolf, Stephan -- Wiemann, Stefan -- Brors, Benedikt -- Lawerenz, Chris -- Eils, Jurgen -- Warnatz, Hans-Jorg -- Risch, Thomas -- Yaspo, Marie-Laure -- Weber, Ursula D -- Bartholomae, Cynthia C -- von Kalle, Christof -- Turanyi, Eszter -- Hauser, Peter -- Sanden, Emma -- Darabi, Anna -- Siesjo, Peter -- Sterba, Jaroslav -- Zitterbart, Karel -- Sumerauer, David -- van Sluis, Peter -- Versteeg, Rogier -- Volckmann, Richard -- Koster, Jan -- Schuhmann, Martin U -- Ebinger, Martin -- Grimes, H Leighton -- Robinson, Giles W -- Gajjar, Amar -- Mynarek, Martin -- von Hoff, Katja -- Rutkowski, Stefan -- Pietsch, Torsten -- Scheurlen, Wolfram -- Felsberg, Jorg -- Reifenberger, Guido -- Kulozik, Andreas E -- von Deimling, Andreas -- Witt, Olaf -- Eils, Roland -- Gilbertson, Richard J -- Korshunov, Andrey -- Taylor, Michael D -- Lichter, Peter -- Korbel, Jan O -- Wechsler-Reya, Robert J -- Pfister, Stefan M -- 5P30CA030199/CA/NCI NIH HHS/ -- P01 CA096832/CA/NCI NIH HHS/ -- P30 CA030199/CA/NCI NIH HHS/ -- P41GM103504/GM/NIGMS NIH HHS/ -- R01 CA159859/CA/NCI NIH HHS/ -- England -- Nature. 2014 Jul 24;511(7510):428-34. doi: 10.1038/nature13379. Epub 2014 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany [2]. ; 1] Biomedical Sciences Graduate Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0685, USA [2] Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA [3]. ; 1] European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany [2]. ; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany. ; 1] Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany [2] European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany. ; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada. ; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada. ; Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA. ; Department of Neuropathology, NN Burdenko Neurosurgical Institute, 4th Tverskaya-Yamskaya 16, Moscow 125047, Russia. ; Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; Data Management Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, Berlin 14195, Germany. ; Division of Translational Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg 69120, Germany. ; 1] Division of Translational Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg 69120, Germany [2] Heidelberg Center for Personalised Oncology (DKFZ-HIPO), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; 1st Department of Pathology and Experimental Cancer Research, Semmelweis University SE, II.sz. Gyermekklinika, Budapest 1094, Hungary. ; 2nd Department of Pediatrics, Semmelweis University, SE, II.sz. Gyermekklinika, Budapest 1094, Hungary. ; 1] Glioma Immunotherapy Group, Division of Neurosurgery, Lund University, Paradisgatan 2, Lund 221 00, Sweden [2] Department of Clinical Sciences, Lund University, Paradisgatan 2, Lund 221 00, Sweden. ; Department of Pediatric Oncology, Masaryk University and University Hospital, Brno, Cernopolni 9 Brno 613 00, Czech Republic. ; Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague 150 06, Czech Republic. ; Department of Oncogenomics, AMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105, AZ Netherlands. ; Department of Neurosurgery, Tubingen University Hospital, Hoppe-Seyler Strasse 3, Tubingen 72076, Germany. ; Division of Immunobiology, Program in Cancer Pathology of the Divisions of Experimental Hematology and Pathology, Program in Hematologic Malignancies of the Cancer and Blood Disease Insitute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 452229, USA. ; 1] Department of Developmental Neurobiology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA [2] Department of Oncology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA. ; Department of Oncology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA. ; Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany. ; Department of Neuropathology, University of Bonn, Sigmund-Freud-Str. 25, Bonn 53105, Germany. ; Cnopf'sche Kinderklinik, Nurnberg Children's Hospital, St-Johannis-Muhlgasse 19, Nurnberg 90419, Germany. ; Department of Neuropathology, Heinrich-Heine-University Dusseldorf, Moorenstrasse 5, Dusseldorf 40225, Germany. ; Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Im Neuenheimer Feld 430, Heidelberg 69120, Germany. ; Department of Neuropathology, University of Heidelberg, Im Neuenheimer Feld 220, Heidelberg 69120, Germany. ; 1] Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany [2] Heidelberg Center for Personalised Oncology (DKFZ-HIPO), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; 1] The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada [2] Division of Neurosurgery, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada. ; 1] Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany [2] Heidelberg Center for Personalised Oncology (DKFZ-HIPO), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; 1] European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany [2] EMBL, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Saffron Walden CB10 1SD, UK. ; 1] Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany [2] Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Im Neuenheimer Feld 430, Heidelberg 69120, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043047" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Child ; Chromosomes, Human, Pair 9/genetics ; DNA-Binding Proteins/*genetics/metabolism ; Enhancer Elements, Genetic/*genetics ; Genomic Structural Variation/*genetics ; Humans ; Medulloblastoma/classification/*genetics/pathology ; Mice ; Oncogenes/*genetics ; Proto-Oncogene Proteins/*genetics/metabolism ; Repressor Proteins/*genetics/metabolism ; Transcription Factors/*genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...