Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
  • 1
    ISSN: 1423-0127
    Keywords: Endomorphins ; G proteins ; Opioid peptides ; μ-Opioid receptors ; Periaqueductal gray matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The midbrain periaqueductal gray matter (PAG) is an important brain region for the coordination of μ-opioid-induced pharmacological actions. The present study was designed to determine whether newly isolated μ-opioid peptide endomorphins can activate G proteins through μ-opioid receptors in the PAG by monitoring the binding to membranes of the non-hydrolyzable analog of GTP, guanosine-5′-O-(3-[35S]thio)triphosphate (35S]GTPγS). An autoradiographic [35S]GTPγS binding study showed that both endomorphin-1 and -2 produced similar anatomical distributions of activated G proteins in the mouse midbrain region. In the mouse PAG, endomorphin-1 and -2 at concentrations from 0.001 to 10 µM increased [35S]GTPγS binding in a concentration-dependent manner and reached a maximal stimulation of 74.6±3.8 and 72.3±4.0%, respectively, at 10 µM. In contrast, the synthetic selective μ-opioid receptor agonist [D-Ala2,NHPhe4,Gly-ol]enkephalin (DAMGO) had a much greater efficacy and produced a 112.6±5.1% increase of the maximal stimulation. The receptor specificity of endomorphin-stimulated [35S]GTPγS binding was verified by coincubating membranes with endomorphins in the presence of specific μ-, δ- or κ-opioid receptor antagonists. Coincubation with selective μ-opioid receptor antagonists β-funaltrexamine orD-Phe-Cys-Tyr-D-Trp-Orn-Thr-Phe-Thr-NH2 (CTOP) blocked both endomorphin-1 and-2-stimulated [35S]GTPγS binding. In contrast, neither δ- nor κ-opioid receptor antagonist had any effect on the [35S]GTPγS binding stimulated by either endomorphin-1 or -2. These findings indicate that both endomorphin-1 and -2 increase [35S]GTPγS binding by selectively stimulating μ-opioid receptors with intrinsic activity less than that of DAMGO and suggest that these new endogenous ligands might be partial agonists for μ-opioid receptors in the mouse PAG.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In the present study, we investigated the role of cyclin-dependent kinase 5 (cdk5) in the brain dynamics changed by repeated in vivo treatment with morphine. The level of phosphorylated-cdk5 was significantly increased in the cingulate cortex of mice showing the morphine-induced rewarding effect. Under these conditions, roscovitine, a cdk5 inhibitor, given intracerebroventricularly (i.c.v.) caused a dose-dependent and significant inhibition of the morphine-induced rewarding effect. In addition, the dose–response effect of the morphine-induced rewarding effect was dramatically attenuated in cdk5 heterozygous (+/–) knockout mice. Furthermore, the development of behavioral sensitization by intermittent administration of morphine was virtually abolished in cdk5 (+/–) mice. These findings suggest that the induction and/or activation of cdk5 are implicated in the development of psychological dependence on morphine.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Thermal hyperalgesia and tactile allodynia induced by sciatic nerve ligation were completely suppressed by repeated intrathecal (i.t.) injection of a TrkB/Fc chimera protein, which sequesters endogenous brain-derived neurotrophic factor (BDNF). In addition, BDNF heterozygous (+/–) knockout mice exhibited a significant suppression of nerve ligation-induced thermal hyperalgesia and tactile allodynia compared with wild-type mice. After nerve ligation, BDNF-like immunoreactivity on the superficial laminae of the ipsilateral side of the spinal dorsal horn was clearly increased compared with that of the contralateral side. It should be noted that a single i.t. injection of BDNF produced a long-lasting thermal hyperalgesia and tactile allodynia in normal mice, and these responses were abolished by i.t. pre-treatment with either a Trk-dependent tyrosine kinase inhibitor K-252a or a selective protein kinase C (PKC) inhibitor Ro-32-0432. Supporting these findings, we demonstrated here for the first time that the increase in intracellular Ca2+ concentration by application of BDNF in cultured mouse spinal neurons was abolished by pre-treatment with either K-252a or Ro-32-0432. Taken together, these findings suggest that the binding of spinally released BDNF to TrkB by nerve ligation may activate PKC within the spinal cord, resulting in the development of a neuropathic pain-like state in mice.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: It is well known that long-term exposure to psychostimulants induces neuronal plasticity. Recently, accumulating evidence suggests that astrocytes may actively participate in synaptic plasticity. In this study, we found that in vitro treatment of cortical neuron/glia co-cultures with either methamphetamine (METH) or morphine (MRP) caused the activation of astrocytes via protein kinase C (PKC). Purified astrocytes were markedly activated by METH, whereas MRP had no such effect. METH, but not MRP, caused a long-lasting astrocytic activation in cortical neuron/glia co-cultures. Furthermore, MRP-induced behavioral sensitization to hyper-locomotion was reversed by 2 months of withdrawal following intermitted MRP administration, whereas behavioral sensitization to METH-induced hyper-locomotion was maintained even after 2 months of withdrawal. Consistent with this cell culture study, in vivo treatment with METH, which was associated with behavioral sensitization, caused a PKC-dependent astrocytic activation in the cingulate cortex and nucleus accumbens of mice. These findings provide direct evidence that METH induces a long-lasting astrocytic activation and behavioral sensitization through the stimulation of PKC in the rodent brain. In contrast, MRP produced a reversible activation of astrocytes via neuronal PKC and a reversibility of behavioral sensitization. This information can break through the definition of drugs of abuse and the misleading of concept that morphine produces a long-lasting neurotoxicity.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Repeated administration of morphine induced a time-dependent inhibition of the morphine-induced antinociceptive action, indicating the development of tolerance to morphine. We demonstrated that mice tolerant to morphine exhibited a significant increase in the level of protein kinase Cγ-like immunoreactivity (PKCγ-IR) in the dorsal horn of the spinal cord. The PKCγ-IR was exclusively colocalized with the neuron-specific markers neuronal nuclei (NeuN) and microtubule associated protein 2ab (MAP2ab). Here we found a dramatic increase in reactive astrocytes in the dorsal horn of the spinal cord following repeated treatment with morphine, as characterized by the increase and morphological changes in glial fibrillary acidic protein (GFAP)-positive cells. Furthermore, transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of the mouse GFAP promoter displayed enhanced levels of EGFP expression after repeated treatment with morphine. Under these conditions, mice lacking the PKCγ gene failed to show any changes in astroglial hypertrophy or proliferation after repeated treatment with morphine. These findings strongly support the idea that the sustained activation of neuronal PKCγ is implicated in the increased levels of reactive astrocytes in the dorsal horn of the spinal cord following repeated treatment with morphine. This neuron–glia communication may lead to the development of tolerance to morphine-induced antinociception.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: A novel µ-opioid receptor (MOR) subtype, named MOR-1B, derived from alternatively spliced variants of MOR gene, has been isolated from the rat brain. Here we found for the first time that CXBK recombinant-inbred mice display a significant reduction in the expression of MOR-1B mRNA in the brain as compared to that in their progenitor C57BL/6 mice. In contrast, the expression level of MOR-1 mRNA in the brain of CXBK mice was similar to that found in C57BL/6 mice. Furthermore, relatively lower levels of MOR-1B immunoreactivity were detected in the periaqueductal grey matter (PAG) of CXBK mice than that observed in C57BL/6 mice. To investigate further the possible changes in MOR function to activate G-proteins under the condition of a reduced MOR-1B expression, the guanosine-5′-o-(3-[35S]thio)triphosphate ([35S]GTPγS) binding assay was performed. We found that the increased level of [35S]GTPγS bindings to whole brain membranes induced by a selective MOR agonist endomorphin-1 was significantly decreased in CXBK mice, indicating that CXBK strain can be classified as MOR-1B-knockdown mice. We next investigated whether intracerebroventricular (i.c.v.) pretreatment with an antisence oligodeoxynucleotide against exon 5 of MOR gene (MOR-1B) could affect the endomorphin-1-induced supraspinal antinociception. The i.c.v. pretreatment with antisence oligodeoxynucleotide against MOR-1B produced a significant reduction in the i.c.v.-administered endomorphin-1-induced antinociceptive effect. The present data provide first evidence that a lack of MOR-1B expression may, at least in part, contribute to the reduced sensitivity to MOR agonists in CXBK mice, and MOR-1B may play a potential role in the MOR-mediated supraspinal antinociception.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1369-1600
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Bisphenol-A (BPA), one of the most common environmental endocrine disrupters, has been evaluated extensively for toxicity and carcinogenicity. However, little is still known about its action on the central nervous system (CNS). In the previous study, we found that prenatal and neonatal exposure to BPA markedly enhanced the rewarding effect induced by morphine. Here we found that prenatal and neonatal exposure to BPA resulted in the attenuation of dopamine D3 receptor-mediated G-protein activation by 7-OH-DPAT in the mouse limbic forebrain. This treatment also caused a significant decrease in the B max value of [3H]PD128907, a dopamine D3 receptor ligand, in this area. Under these conditions, no change in dopamine D3 receptor mRNA expression in the limbic forebrain and lower midbrain was observed by prenatal and neonatal exposure to BPA. The present data provide further evidence that prenatal and neonatal exposure to BPA leads to the reduction of functional dopamine D3 receptors without affecting the new synthesis of dopamine D3 receptors in the mouse limbic forebrain.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: It is well known that prolonged exposure to morphine results in tolerance to morphine-induced antinociception. In the present study, we found that either intrathecal (i.t.) or subcutaneous (s.c.) injection of the selective metabotropic glutamate receptor 5 (mGluR5) antagonist, methyl-6-(phenylethynyl)-pyridine hydrochloride (MPEP), attenuated the development of tolerance to morphine-induced antinociception. Using the receptor binding assay, we found here that the number of mGluR5 in the mouse spinal cord was significantly increased by repeated treatment with morphine. Furthermore, repeated treatment with morphine produced a significant increase in the level of mGluR5 immunoreactivity in the dorsal horn of the mouse spinal cord. Double-labeling experiments showed that the increased mGluR5 was predominantly expressed in the neurons and sparsely expressed in the processes of astrocytes following repeated treatment with morphine. Consistent with these results, the response of Ca2+ to the selective group I mGluR agonist, 3,5-dihydroxyphenylglycine (DHPG), in cultured spinal cord neurons was potently enhanced by 3 days of in vitro treatment with morphine. These findings support the idea that the increased mGluR5 following repeated treatment with morphine leads to enhanced neuronal excitability and synaptic transmission in the dorsal horn of the spinal cord and, in turn, suppresses the morphine-induced antinociception in mice.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We recently reported that μ-opioid receptor agonist morphine failed to induce its rewarding effects in rodents with sciatic nerve injury. In the present study, we investigated whether a state of neuropathic pain induced by sciatic nerve ligation could change the activities of the extracellular signal-regulated kinase (ERK) and p38 in the mouse lower midbrain area including the ventral tegmental area (VTA), and these changes could directly affect the development of the morphine-induced rewarding effect in mice. The sciatic nerve ligation caused a long-lasting and profound thermal hyperalgesia. A dose-dependent place preference induced by s.c. administration of morphine was observed in sham-operated mice, but not in sciatic nerve-ligated mice. We found here for the first time that nerve injury produces a sustained and significant reduction in protein levels of phosphorylated-ERK and -p38 in cytosolic preparations of the mouse lower midbrain. The inhibition of ERK activity by i.c.v. pre-treatment with either PD98059 or U0126 impaired the morphine-induced place preference. In contrast, i.c.v. treatment with a specific inhibitor of p38, SB203580, did not interfere with the morphine-induced rewarding effect. Immunohistochemical study showed a drastic reduction in phosphorylated-ERK immunoreactivity within tyrosine hydroxylase-positive cells of the VTA. These results suggest that a sustained reduction in the ERK-dependent signalling pathway in dopamine cells of the VTA may be implicated in the suppression of the morphine-induced rewarding effect under neuropathic pain.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The present study was designed to investigate the rewarding effect, G-protein activation and dopamine (DA) release following partial sciatic nerve ligation in the rat. Here we show for the first time that morphine failed to produce a place preference in rats with nerve injury. Various studies provide arguments to support that the mesolimbic dopaminergic system, which projects from the ventral tegmental area (VTA) to the nucleus accumbens (N.Acc), is critical of the motivational effects of opioids. In the present study, there were no significant differences between sham-operated and sciatic nerve-ligated rats in the increases in guanosine-5′-o-(3-[35S]thio)triphosphate ([35S]GTPγS) binding to membranes of the N.Acc stimulated by either DA, the D1 receptor agonist SKF81297, the D2 receptor agonist N-propylnoraporphine or the D3 receptor agonist 7-hydroxy-2-dipropylaminotetralin (7-OH DPAT). In contrast, the increases in [35S]GTPγS binding to membranes of the VTA induced by either morphine or a selective µ-opioid receptor agonist [d-Ala2, NMePhe4, Gly(ol)5]enkephalin were significantly attenuated in nerve-ligated rats as compared with sham- operated rats. Furthermore, the enhancement of DA release in the N.Acc stimulated by morphine was significantly suppressed by sciatic nerve ligation. These findings suggest that attenuation of the morphine-induced place preference under neuropathic pain may result from a decrease in the morphine-induced DA release in the N.Acc with reduction in the µ-opioid receptor-mediated G-protein activation in the VTA.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...