Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1433-8491
    Keywords: Neuronal activity ; EEG-cortex ; Hypoglycemia ; Cat ; Neuronale Aktivität ; EEG-Cortex ; Hypoglykämie ; Katze
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung 1. An Katzen wurden EEG-Veränderungen durch Hypoglykämie hervorgerufen und mit den Aktivitätsveränderungen corticaler Neurone verglichen, wie sie sich bei intracellulären und „quasi-intracellulären“ Ableitungen darstellen. Es zeigte sich, daß pathologische EEG-Veränderungen erst bei niedrigen Blutzuckerwerten (zwischen 30 und 25 mg-%) auftreten und daß es erst bei Werten unter 10–15 mg-% zur elektrischen Stille kommt. 2. Während des flachen, desynchronisierten EEG des wachen Hirns vor Hypoglykämie lassen sich keine Beziehungen zwischen den kleinen EEG- und statistisch verteilten Zellpotentialen nachweisen. — Während der regelmäßigen 8–10/sec- Spindelgruppen, die bei tiefer Hypoglykämie häufig zu beobachten sind, findet sich eine enge Korrelation zwischen den einzelnen Oberflächen-negativen Spindelwellen und Zelldepolarisationen, die meist unterschwellig sind. 3. Bei den langsamen Wellen der δ-Frequenz finden sich ähnliche, aber weniger enge Korrelationen für die flachen, „monomorphen“ δ-Wellen. Andere Formen von langsamen Potentialkomplexen des Cortiocogramms, die im Tintenschreiber als „polymorphe“ δ-Wellen imponieren können, zeigen etwas andere, aber für den einzelnen Wellenkomplex jeweils konstante Beziehungen zur Zellaktivität. 4. Die steilen Wellen wurden unterteilt in primär positive und in primär negative bi- (oder auch tri-)phasische Potentiale. Die primäre Phase der primär-positiven steilen Potentiale ist im Durchschnitt kürzer (unter 20–40 msec) als die negative Phase der primär-negativen Phase (über 100 msec). Die meist überschwellige Zelldepolarisation, die in der Regel zu einer kurzen Gruppenentladung führt, fällt mit der primären Phase, also entweder der positiven oder der negativen zusammen. Die Phasenkoppelung, d. h. die „Synchronisation“ mit dem EEG-Potential, ist jedoch im Fall der primär-positiven Phase enger und die Dauer der Depolarisation kürzer als im Fall der primär-negativen steilen Potentiale. Diese Befunde werden als Hinweis auf eine stärkere Synchronisation der Aktivität der corticalen Nervenzellpopulation im Fall der primär-positiven steilen Potentiale gewertet. 5. Die verschieden engen Phasenkoppelungen und die je nach Steilheit der Wellen wechselnden Phasenbeziehungen zwischen Zellaktivierung und oberflächennegativen resp. -positiven Potentialen werden an Hand eines einfachen Modells der Elektrogenese von EEG-Potentialen erklärt, das den Synchronisationsgrad cortico-petaler und cortico-fugaler Faseraktivität sowie die Summation postsynaptischer Potentiale corticaler Neurone berücksichtigt.
    Notes: Summary 1. The EEG, recorded monopolarly from the pial surface, was investigated during insuline induced hypoglycemia in acute cats and compared with the activity of cortical cells recorded with intra or “quasi-intracellular” electrodes. 2. Pathological changes of the EEG were observed only when the blood glucose fell below 25–30 mg-%. Electrical silence was observed at blood glucose levels below 15–10 mg-%. 3. The essentially flat, “desynchronized” EEG of the awake animal before hypoglycemia did not show any relation between the small, irregular fast EEG- potentials and the statistically distributed cellular potentials. —During the regular 8–10/sec spindles (Fig. 3) a close correlation was found between the single surface- negative spindle waves and the mostly subthreshold compound cellular EPSP's. 4. Slow waves of δ-frequency showed similar but less close correlations, if the waves were of regular appearance comparable to “monomorphic” δ-waves (Fig.4A). Other forms of slow complex potentials (Fig.4B and C), which correspond to “polymorphic” δ-waves in an EEG-record (e.g. Fig.4C and Fig.2d) may show different relations between cellular and EEG-activity which were, however, consistent for each type of complex wave. 5. Sharp waves were divided into primary positive and primary negative bi- (or tri-)phasic potentials. The primary positive phase was always shorter (below 20–40 msec) than the primary negative phase (above 100 msec). The mostly suprathreshold cellular depolarization, which may lead to a short burst of discharge, coincided with the primary, i.e. either the primary positive or the primary negative phase (Fig. 7 shows records from the same cell and different EEG-phenomena). The phase coupling, i.e. the “synchronization” with the EEG-potential, is closer in the primary positive than the primary negative waves, and the duration of the cellular depolarization is also shorter in the former case (compare Fig.7B I–III with 7B IV). This can be interpreted as stronger synchronization of cellular activity during the short primary positive waves. 6. A causal relation between cortical neuronal activity and EEG-potentials is assumed. Differences in the closeness of phase coupling and the changing phase relation between cellular and EEG-activity according to the form and steepness of cortical EEG-potentials are explained by a simple model of electrogenesis of EEG-potentials, which takes in account the degree of synchronization of corticopetal and cortico-fugal fibre activity as well as the summation of postsynaptic potentials of cortical neurones.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary 1. When catching flying prey under laboratory conditionsRhinolophus ferrumequinum typically emit FM-CF-FM signals (Fig. 2). Except for the last two sounds during approach and final buzz the FM-parts are fainter than the CF-component by a factor of 0.76+-14 (Fig. 1). The final FM-part was undetectable in some signals emitted during approach (Fig. 3). 2. In obstacle avoidance flights both, preceding and final FM-parts are prominent and louder than the CF-part by a factor of 1.14 to 1.63 (Fig. 1 and 3). Bandwidths of the FM-components increased from ca. 3.5 to 12 kHz for the starting and from 12 to 20 kHz on the average for the final FM-sweep (Table 1). 3. In the open field during cruising flightsNyctalus noctula emits pure tones of 22.5 to 25.0 kHz without any frequency modulated components and a duration of 10 to 50 ms (Fig. 4). Brief frequency modulated signals sweeping from ca. 50 to 20 kHz in about 1–2 ms are emitted during pursuit of prey (Fig. 4). 4. Under laboratory conditionsNyctalus noctula does not emit pure tones and is not able to catch flying prey in a flight chamber 10.5×3.5×2.15 m in size. During flights towards a landing platformNyctalus noctula invariably emits brief frequency modulated pulses. During an individual flight the structure is not changed (Fig. 5). 5. InNyctalus noctula specific features of the echolocation pulses, e.g. frequency range swept through, presence of harmonics and double pulses (Fig. 6) are maintained during an individual flight. These specific characteristics of the signal may be used to identify echoes belonging to its own emitted echolocation pulse.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 160 (1987), S. 1-1 
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The postnatal development of midbrain tonotopy was investigated in the inferior colliculus (IC) of the south Indian CF-FM batHipposideros speoris. The developmental progress of the three-dimensional frequency representation was determined by systematic stereotaxic recordings of multiunit clusters from the 1st up to the 7th postnatal week. Additional developmental measures included the tuning characteristics of single units (Figs. 3f; 4f; 5f), the analysis of the vocalised pulse repertoire (Figs. 3e, 4e, 5e), and morphometric reconstructions of the brains of all experimental animals (Fig. 1). The maturation of auditory processing could be divided into two distinct, possibly overlapping developmental periods: First, up to the 5th week, the orderly tonotopy in the IC developed, beginning with the low frequency representation and progressively adding the high frequency representation. With regard to the topology of isofrequency sheets within the IC, maturation progresses from dorsolateral to ventromedial (Figs. 3c, 4c). At the end of this phase the entire IC becomes specialised for narrowly tuned and sensitive frequency processing. This includes the establishment of the ‘auditory fovea’, i.e. the extensive spatial representation of a narrow band of behaviorally relevant frequencies in the ventromedial part of the IC. In the 5th postnatal week the auditory fovea is concerned with frequencies from 100–118 kHz (Fig. 4c, d). During subsequent development, the frequency tuning of the auditory fovea increases by 20–25 kHz and finally attains the adult range of ca. 125–140 kHz. During this process, neither the bandwidth of the auditory fovea (15–20 kHz) nor the absolute sensitivity of its units (ca. 50 dB SPL) were changed. Further maturation occurred at the single unit level : the sharpness of frequency tuning increased from the 5th to the 7th postnatal weeks (Q-10-dB-values up to 30–60), and upper thresholds emerged (Figs. 4f, 5f). Although in the adult the frequency of the auditory fovea matches that of the vocalised pulses, none of the juvenile bats tested from the 5th to the 7th weeks showed such a frequency match between vocalisation and audition (Figs. 4e, 5e). The results show that postnatal maturation of audition in hipposiderid bats cannot be described by a model based on a single developmental parameter.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1351
    Keywords: Hearing ; Chiroptera ; Desmodus Inferior colliculus ; Tonotopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary 1. Within the tonotopic organization of the inferior colliculus two frequency ranges are well represented: a frequency range within that of the echolocation signals from 50 to 100 kHz, and a frequency band below that of the echolocation sounds, from 10 to 35 kHz. The frequency range between these two bands, from about 40 to 50 kHz is distinctly underrepresented (Fig. 3B). 2. Units with BFs in the lower frequency range (10–25 kHz) were most sensitive with thresholds of -5 to -11 dB SPL, and units with BFs within the frequency range of the echolocation signals had minimal thresholds around 0 dB SPL (Fig. 1). 3. In the medial part of the rostral inferior colliculus units were encountered which preferentially or exclusively responded to noise stimuli. — Seven neurons were found which were only excited by human breathing noises and not by pure tones, frequency modulated signals or various noise bands. These neurons were considered as a subspeciality of the larger sample of noise-sensitive neurons. — The maximal auditory sensitivity in the frequency range below that of echolocation, and the conspicuous existence of noise and breathing-noise sensitive units in the inferior colliculus are discussed in context with the foraging behavior of vampire bats.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1351
    Keywords: Key words Medial superior olive ; Interaural time ; difference ; Receptive field ; Precedence effect ; Temporal processing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Traditionally, the medial superior olive, a mammalian auditory brainstem structure, is considered to encode interaural time differences, the main cue for localizing low-frequency sounds. Detection of binaural excitatory and inhibitory inputs are considered as an underlying mechanism. Most small mammals, however, hear high frequencies well beyond 50 kHz and have small interaural distances. Therefore, they can not use interaural time differences for sound localization and yet possess a medial superior olive. Physiological studies in bats revealed that medial superior olive cells show similar interaural time difference coding as in larger mammals tuned to low-frequency hearing. Their interaural time difference sensitivity, however, is far too coarse to serve in sound localization. Thus, interaural time difference sensitivity in medial superior olive of small mammals is an epiphenomenon. We propose that the original function of the medial superior olive is a binaural cooperation causing facilitation due to binaural excitation. Lagging inhibitory inputs, however, suppress reverberations and echoes from the acoustic background. Thereby, generation of antagonistically organized temporal fields is the basic and original function of the mammalian medial superior olive. Only later in evolution with the advent of larger mammals did interaural distances, and hence interaural time differences, became large enough to be used as cues for sound localization of low-frequency stimuli.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The responses of 230 single neurons in the inferior colliculus of the horseshoebat to single tones have been studied, emphasizing systematic analysis of the effective frequency bands, dynamic properties and the time course of responses. Distribution of the units' best excitatory frequencies (BEF) is: low frequency neurons 23% (BEF 3–65 kHz); FM-frequency neurons 25% (BEF 65–81 kHz, i.e., frequencies occurring in the FM-part of the bat's echo signal); filter neurons 45% (BEF 81–88 kHz, i.e., frequencies occurring in the stabilized CF-part of the bat's echo=reference frequency (RF)); high frequency neurons about 7% (BEF 〉 88 kHz). Tuning curves show conventional shapes (Fig. 1), apart from those of filter neurons, which are extremely narrow. Accordingly, Q10dB-values (BEF divided by the bandwidth of the tuning curve at 10 dB above threshold) are 80–450 in filter neurons (Fig. 2). Response patterns (Fig. 3) are similar to those of Nucleus cochlearis units (transient, sustained, negative and complex responders) with an increased percentage of complex responders up to 38% and a decreased number of transient responders. All types of spike-count functions are found (Fig. 4); nonmonotonic ones dominating. Maximal spike counts are not at the BEF but a few kHz below. Distinct upper thresholds, especially at the BEF of filter neurons (Fig. 5) lead to abrupt changes in activity by slightly shifting stimulus frequency or intensity. The hallmark of inferior colliculus neurons is inhibition, disclosed by distinct inhibitory areas enfolding and overlapping excitatory ones (Figs. 3 and 5). Duration of inhibition varies with stimulus frequency, but is largely independent of stimulus duration (Fig. 6), whereas rebound of inhibition depends on stimulus duration building up periodic rebound activities, if stimulus duration is lengthened. In addition, there are neurons responding only periodically, regardless of stimulus frequency and intensity (Fig. 7). Inhibition is discussed in terms of improving the neuronal signal/spontaneous noise ratio and altering responsiveness of neurons after stimulation, so that these neurons may be suited to time processing in the acoustic pathway.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The tonotopic organization of the inferior colliculus (IC) in two echolocating bats,Hipposideros speoris andMegaderma lyra, was studied by multiunit recordings. InHipposideros speoris frequencies below the range of the echolocation signals (i.e. below 120 kHz) are compressed into a dorsolateral cap about 400–600 Μm thick. Within this region, neuronal sheets of about 4–5 Μm thickness represent a 1 kHz-band. In contrast, the frequencies of the echolocation signals (120–140 kHz) are overrepresented and occupy the central and ventral parts of the IC (Fig. 3). In this region, neuronal sheets of about 80 Μm thickness represent a 1 kHz-band. The largest 1 kHz-slabs (400–600 Μm) represent frequencies of the pure tone components of the echolocation signals (130–140 kHz). The frequency of the pure tone echolocation component is specific for any given individual and always part of the overrepresented frequency range but did not necessarily coincide with the BF of the thickest isofrequency slab. Thus hipposiderid bats have an auditory fovea (Fig. 10). In the IC ofMegaderma lyra the complete range of audible frequencies, from a few kHz to 110 kHz, is represented in fairly equal proportions (Fig. 7). On the average, a neuronal sheet of 30 Μm thickness is dedicated to a 1 kHz-band, however, frequencies below 20 kHz, i.e. below the range of the echolocation signals, are overrepresented. Audiograms based on thresholds determined from multiunit recordings demonstrate the specific sensitivities of the two bat species. InHipposideros speoris the audiogram shows two sensitivity peaks, one in the nonecholocating frequency range (10–60 kHz) and one within the auditory fovea for echolocation (130–140 kHz).Megaderma lyra has extreme sensitivity between 15–20 kHz, with thresholds as low as −24 dB SPL, and a second sensitivity peak at 50 kHz (Fig. 8). InMegaderma lyra, as in common laboratory mammals, Q10dB-values of single units do not exceed 30, whereas inHipposideros speoris units with BFs within the auditory fovea reach Q10dB-values of up to 130. InMegaderma lyra, many single units and multiunit clusters with BFs below 30 kHz show upper thresholds of 40–50 dB SPL and respond most vigorously to sound intensities below 30 dB SPL (Fig. 9). Many of these units respond preferentially or exclusively to noise. These features are interpreted as adaptations to detection of prey-generated noises. The two different tonotopic arrangements (compare Figs. 3 and 7) in the ICs of the two species are correlated with their different foraging behaviours. It is suggested that pure tone echolocation and auditory foveae are primarily adaptations to echo clutter rejection for species foraging on the wing close to vegetation.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 154 (1984), S. 133-142 
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary 1. Audiograms are recorded from one non-echolocating and nine echolocating sympatrically living bat species of South India. These species areCynopterus sphinx (non-echolocating),Tadarida aegyptiaca, Taphozous melanopogon, T. kachhensis, Rhinopoma hardwickei, Pipistrellus dormeri, P. mimus, Hipposideros speoris, H. bicolor andMegaderma lyra. 2. InRhinopoma hardwickei a highly sensitive frequency range was found which is narrowly tuned to the frequency band of the bat's CF-echolocation call (32–35 kHz, Fig. 3). In hipposiderids a ‘filter’ narrowly tuned to the frequency of the CF-part of the CF-FM echolocation sounds (137.5 kHz inH. speoris and 151.5 kHz inH. bicolor, Fig. 5) could be recorded from deeper parts of IC. 3. In the echolocating species the best frequency of the audiograms closely matched with that frequency range in the echolocation calls containing most energy. 4. In bat species foraging flying prey best frequencies of audiograms and height of preferred foraging areas are inversely related, i.e. bat species hunting high above canopy have lower best frequencies than those foraging close to or within canopy (Fig. 6). 5. A hypothesis is forwarded explaining how fluttering target detection by constant frequency echolocation might have evolved from long distance echolocation by pure tone signals.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary 1. Two hipposiderid bats,H. bicolor andH. speoris, were observed in their natural foraging areas in Madurai (South India). Both species hunt close together near the foliage of trees and bushes but they differ in fine structure of preferred hunting space:H. bicolor hunts within the foliage, especially whenH. speoris is active at the same time, whereasH. speoris never flies in dense vegetation but rather in the more open area (Fig. 1, Table 1). 2. Both species emit CF/FM-sounds containing only one harmonic component in almost all echolocation situations. The CF-parts of CF/FM-sounds are species specific within a band of 127–138 kHz forH. speoris and 147–159 kHz forH. bicolor (Tables 2 and 3). 3. H. speoris additionally uses a complex harmonic sound during obstacle avoidance and during laboratory tests for Doppler shift compensation.H. bicolor consistently emits CF/FM-sounds in these same situations (Fig. 2). 4. Both hipposiderid bats respond to Doppler shifts in the returning echoes by lowering the frequency of the emitted sounds (Fig. 3). However, Doppler compensations are incomplete as the emitted frequencies are decreased by only 55% and 56% (mean values) of the full frequency shifts byH. speoris andH, bicolor, respectively. 5. The differences in Doppler shift compensation, echolocating and hunting behavior suggest thatH. speoris is less specialized on echolocation with CF/FM-sounds thanH. bicolor.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...