Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: tumor ; Germany ; COHORT ; GENE ; HYBRIDIZATION ; TUMORS ; PATIENT ; MARKER ; SEQUENCE ; DELETION ; STAGE ; AMPLIFICATION ; COMPARATIVE GENOMIC HYBRIDIZATION ; COPY NUMBER ; PATTERNS ; microarrays ; NUMBER ; MARKERS ; REGION ; REGIONS ; PHENOTYPE ; REVEALS ; CHILDREN ; SEGMENTS ; 1p ; neuroblastoma ; CHROMOSOMES ; SUBSET ; CYTOGENETIC ANALYSIS ; BREAKPOINTS ; MYCN-AMPLIFICATION ; function ; LOSSES ; HIGH-RESOLUTION ANALYSIS ; genomic ; GENOMIC ALTERATIONS ; 11Q ; CGH ANALYSIS ; DNA-COPY-NUMBER
    Abstract: The study of genomic alterations in neuroblastoma is of particular importance since several cytogenetic markers proved to be closely associated with the clinical phenotype. To disclose patterns of gains and losses, we performed high-resolution oligonucleotide array-based comparative genomic hybridization (aCGH). A total cohort of 90 patients was classified into 6 subsets according to tumor stage and outcome: Stages 1-3+ (with event), Stage 1-3- (no event), Stage 4+/-, and Stage 4S+/-. The aberration patterns in Stages 1-3- and 4S- tumors differed from all other groups as they were predominantly characterized by losses (3, 4, 14, X) and gains (7, 17) of whole chromosomes. However, 59/65 (91%) tumors of Stages 1-3+ or Stage 4 revealed numerous structural copy number alterations (sCNA). While deletions in chromosomes 1, 3, and I I discriminated outcome in Stage 4, there were no specific sCNA that distinguished tumor stage within the subgroup of unfavorable tumors. sCNA in 1p, 3p, 11q, 17q, or MYCN amplification (MNA) was seen among 22/24 patients who died, 10/12 with metastatic relapses, and 5/9 with local recurrences. Detailed breakpoint analyses on chromosomes 1, 3, 11, and 17 disclosed preferred breaking areas, although breakpoints were not identical. Amplifications were found in 18 patients and involved 2p24 (MYCN) and other segments of chromosome 2, as well as regions on chromosome arms 6q, 12q, and 17q. One single feature in 21q21.1 (BU678720, without known function yet) attracted particular attention since five patients showed a homozygous loss of this sequence. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat. (c) 2006 Wiley-Liss, Inc
    Type of Publication: Journal article published
    PubMed ID: 16958102
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 75 (1999), S. 2969-2971 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In order to prepare n-type CuGaSe2 as-grown, p-type CuGaSe2 single crystals were at first doped by Ge implantation. Thermal healing of the implantation damage in vacuum resulted in strong electrical compensation of the material, but not in n-type conduction. This limitation was overcome by annealing of implanted samples in Zn atmosphere, resulting in n-type conduction of CuGaSe2 with a carrier concentration at room temperature of up to 1016 cm−3. The samples were analyzed by photoluminescence, resistivity, and Hall effect measurements. It was found that the Zn–Ge codoping minimizes the formation of Cu vacancies, which act as acceptor levels and lead to self-compensation, by the formation of ZnCu defects. Furthermore, the number of electrically active Ge dopants is increased by a rise of the GeGa concentration compared to the GeCu defect density. The possibility of n-type conduction in Ga-rich CuIn1−xGaxSe2 compounds opens the possibility of the preparation of homojunction photovoltaic devices and might lead to improved solar cell performance of large band-gap chalcopyrites. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...