Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The Holifield Radioactive Ion Beam Facility now under construction at the Oak Ridge National Laboratory will use the 25 MV tandem accelerator for the acceleration of radioactive ion beams to energies appropriate for research in nuclear physics; negative ion beams are, therefore, required for injection into the tandem accelerator. Because charge exchange is an efficient means for converting initially positive ion beams to negative ion beams, both positive and negative ion sources are viable options for use at the facility. The choice of the type of ion source will depend on the overall efficiency for generating the radioactive species of interest. Although direct-extraction negative ion sources are clearly desirable, the ion formation efficiencies are often too low for practical consideration; for this situation, positive ion sources, in combination with charge exchange, are the logical choice. The high-temperature version of the CERN-ISOLDE positive ion source has been selected and a modified version of the source designed and fabricated for initial use at the facility because of its low emittance, relatively high ionization efficiencies, and species versatility, and because it has been engineered for remote installation, removal, and servicing as required for safe handling in a high-radiation-level ISOL facility. The source will be primarily used to generate ion beams from elements with intermediate to low electron affinities. Prototype plasma-sputter negative ion sources and negative surface-ionization sources are under design consideration for generating radioactive ion beams from high-electron-affinity elements. The design features of these sources and expected efficiencies and beam qualities (emittances) will be described in this report.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A negative-ion source extraction model has been formulated and implemented that explicitly considers the motion of positive ions and the volume generation of negative ions. It is found that (1) for high-beam currents, the beam current is limited by a transverse space-charge limit, meaning that an increase in negative-ion density at the extraction sheath will result in a lower-beam current (this result is universally observed at high-beam current); (2) there is a saddle point with a potential barrier preventing most volume-produced negative ions from being extracted [the combination of (1) and (2) indicates that most of the negative ions being created do not find their way into the beam]; (3) the introduction of cesium may cause an increase in the transverse space-charge limit; (4) cesium also results in an increase in the fraction of volume-produced negative ions that are extracted; (5) cesium may also result in reduction of extracted electrons by producing a less negative bias on the plasma electrode with respect to the plasma, thus allowing the transverse space-charge limit budget to be taken up virtually totally by the ions. [The combination of (3)–(5) represents the way an actual increase in the beam current can be achieved]; (6) a strong ion time scale sheath instability due to violation of the Bohm criteria produces an anomalous ion temperature, which increases with the beam current, as routinely seen in measurements; and (7) the introduction of cesium may result in a reduction in this instability. These insights may lead to improvements in volume negative-ion sources.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The Holifield Radioactive Ion Beam Facility now under construction at the Oak Ridge National Laboratory will use the 25-MV tandem accelerator for the acceleration of radioactive ion beams to energies appropriate for research in nuclear physics; negative ion beams are, therefore, required for injection into the tandem accelerator. Because charge exchange is an efficient means for converting initially positive ion beams to negative ion beams, both positive and negative ion sources are viable options for use at the facility. The choice of the type of ion source will depend on the overall efficiency for generating the radioactive species of interest. Although direct-extraction negative ion sources are clearly desirable, the ion formation efficiencies are often too low for practical consideration; for this situation, positive ion sources, in combination with charge exchange, are the logical choice. The high-temperature version of the CERN-ISOLDE positive ion source has been selected and a modified version of the source designed and fabricated for initial use at the facility because of its low emittance, relatively high ionization efficiencies and species versatility, and because it has been engineered for remote installation, removal and servicing as required for safe handling in a high-radiation-level ISOL facility. The source will be primarily used to generate ion beams from elements with intermediate to low ionization potentials. Prototype plasma-sputter negative ion sources and negative surface-ionization sources are under design consideration for generating radioactive ion beams from high-electron-affinity elements. The design features of these sources and expected efficiencies and beam qualities (emittances) will be described in this report.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...