Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: MODELS ; POPULATION ; SIGNAL ; BREAST-CANCER ; LINKAGE DISEQUILIBRIUM ; COMMON VARIANT ; susceptibility loci ; GENOME-WIDE ASSOCIATION ; GENETIC-VARIATION ; RECOMBINATION HOTSPOTS ; IDENTIFIES 5 ; MYEOV
    Abstract: Genome-wide association studies have identified prostate cancer susceptibility alleles on chromosome 11q13. As part of the Cancer Genetic Markers of Susceptibility (CGEMS) Initiative, the region flanking the most significant marker, rs10896449, was fine mapped in 10 272 cases and 9123 controls of European origin (10 studies) using 120 common single nucleotide polymorphisms (SNPs) selected by a two-staged tagging strategy using HapMap SNPs. Single-locus analysis identified 18 SNPs below genome-wide significance (P 〈 10(-8)) with rs10896449 the most significant (P = 7.94 x 10(-19)). Multi-locus models that included significant SNPs sequentially identified a second association at rs12793759 [odds ratio (OR) = 1.14, P = 4.76 x 10(-5), adjusted P = 0.004] that is independent of rs10896449 and remained significant after adjustment for multiple testing within the region. rs10896438, a proxy of previously reported rs12418451 (r(2) = 0.96), independent of both rs10896449 and rs12793759 was detected (OR = 1.07, P = 5.92 x 10(-3), adjusted P = 0.054). Our observation of a recombination hotspot that separates rs10896438 from rs10896449 and rs12793759, and low linkage disequilibrium (rs10896449-rs12793759, r(2) = 0.17; rs10896449-rs10896438, r(2) = 0.10; rs12793759-rs10896438, r(2) = 0.12) corroborate our finding of three independent signals. By analysis of tagged SNPs across similar to 123 kb using next generation sequencing of 63 controls of European origin, 1000 Genome and HapMap data, we observed multiple surrogates for the three independent signals marked by rs10896449 (n = 31), rs10896438 (n = 24) and rs12793759 (n = 8). Our results indicate that a complex architecture underlying the common variants contributing to prostate cancer risk at 11q13. We estimate that at least 63 common variants should be considered in future studies designed to investigate the biological basis of the multiple association signals
    Type of Publication: Journal article published
    PubMed ID: 21531787
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: CANCER ; GROWTH ; POPULATION ; RISK ; TUMORS ; COMPLEX ; RISK-FACTORS ; BRCA1 ; ovarian cancer ; GENOME-WIDE ASSOCIATION ; CONSORTIUM ; CONFER SUSCEPTIBILITY ; COMMON VARIANTS ; TUMOR SUBTYPES ; 14Q24.1 RAD51L1
    Abstract: The 19p13.1 breast cancer susceptibility locus is a modifier of breast cancer risk in BRCA1 mutation carriers and is also associated with risk of ovarian cancer. Here we investigated 19p13.1 variation and risk of breast cancer subtypes, defined by estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) status, using 48,869 breast cancer cases and 49,787 controls from the Breast Cancer Association Consortium (BCAC). Variants from 19p13.1 were not associated with breast cancer overall or with ER-positive breast cancer but were significantly associated with ER-negative breast cancer risk [rs8170 Odds Ratio (OR)=1.10, 95% Confidence Interval (CI) 1.05 - 1.15, p=3.49 x 10-5] and triple negative (TN) (ER, PR and HER2 negative) breast cancer [rs8170 OR=1.22, 95% CI 1.13 - 1.31, p=2.22 x 10-7]. However, rs8170 was no longer associated with ER-negative breast cancer risk when TN cases were excluded [OR=0.98, 95% CI 0.89 - 1.07, p=0.62]. In addition, a combined analysis of TN cases from BCAC and the Triple Negative Breast Cancer Consortium (TNBCC) (n=3,566) identified a genome-wide significant association between rs8170 and TN breast cancer risk [OR=1.25, 95% CI 1.18 - 1.33, p=3.31 x 10-13]. Thus, 19p13.1 is the first triple negative-specific breast cancer risk locus and the first locus specific to a histological subtype defined by ER, PR, and HER2 to be identified. These findings provide convincing evidence that genetic susceptibility to breast cancer varies by tumor subtype and that triple negative tumors and other subtypes likely arise through distinct etiologic pathways.
    Type of Publication: Journal article published
    PubMed ID: 22331459
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: RISK ; ALLELES ; GENETIC SUSCEPTIBILITY ; LOCI ; GENOME-WIDE ASSOCIATION ; CONFER SUSCEPTIBILITY ; COMMON VARIANTS ; EPISTASIS ; IDENTIFIES 2 ; ERAP1
    Abstract: Part of the substantial unexplained familial aggregation of breast cancer may be due to interactions between common variants, but few studies have had adequate statistical power to detect interactions of realistic magnitude. We aimed to assess all two-way interactions in breast cancer susceptibility between 70 917 single nucleotide polymorphisms (SNPs) selected primarily based on prior evidence of a marginal effect. Thirty-eight international studies contributed data for 46 450 breast cancer cases and 42 461 controls of European origin as part of a multi-consortium project (COGS). First, SNPs were preselected based on evidence (P 〈 0.01) of a per-allele main effect, and all two-way combinations of those were evaluated by a per-allele (1 d.f.) test for interaction using logistic regression. Second, all 2.5 billion possible two-SNP combinations were evaluated using Boolean operation-based screening and testing, and SNP pairs with the strongest evidence of interaction (P 〈 10(-4)) were selected for more careful assessment by logistic regression. Under the first approach, 3277 SNPs were preselected, but an evaluation of all possible two-SNP combinations (1 d.f.) identified no interactions at P 〈 10(-8). Results from the second analytic approach were consistent with those from the first (P 〉 10(-10)). In summary, we observed little evidence of two-way SNP interactions in breast cancer susceptibility, despite the large number of SNPs with potential marginal effects considered and the very large sample size. This finding may have important implications for risk prediction, simplifying the modelling required. Further comprehensive, large-scale genome-wide interaction studies may identify novel interacting loci if the inherent logistic and computational challenges can be overcome.
    Type of Publication: Journal article published
    PubMed ID: 24242184
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: EXPRESSION ; transcription ; CHROMATIN ; WOMEN ; REVEALS ; susceptibility loci ; GENOME-WIDE ASSOCIATION ; AFRICAN-AMERICAN ; ESTROGEN-RECEPTOR BINDING ; DETERMINANT
    Abstract: The 10q26 locus in the second intron of FGFR2 is the locus most strongly associated with estrogen-receptor-positive breast cancer in genome-wide association studies. We conducted fine-scale mapping in case-control studies genotyped with a custom chip (iCOGS), comprising 41 studies (n = 89,050) of European ancestry, 9 Asian ancestry studies (n = 13,983), and 2 African ancestry studies (n = 2,028) from the Breast Cancer Association Consortium. We identified three statistically independent risk signals within the locus. Within risk signals 1 and 3, genetic analysis identified five and two variants, respectively, highly correlated with the most strongly associated SNPs. By using a combination of genetic fine mapping, data on DNase hypersensitivity, and electrophoretic mobility shift assays to study protein-DNA binding, we identified rs35054928, rs2981578, and rs45631563 as putative functional SNPs. Chromatin immunoprecipitation showed that FOXA1 preferentially bound to the risk-associated allele (C) of rs2981578 and was able to recruit ER alpha to this site in an allele-specific manner, whereas E2F1 preferentially bound the risk variant of rs35054928. The risk alleles were preferentially found in open chromatin and bound by Ser5 phosphorylated RNA polymerase II, suggesting that the risk alleles are associated with changes in transcription. Chromatin conformation capture demonstrated that the risk region was able to interact with the promoter of FGFR2, the likely target gene of this risk region. A role for FOXA1 in mediating breast cancer susceptibility at this locus is consistent with the finding that the FGFR2 risk locus primarily predisposes to estrogen-receptor-positive disease.
    Type of Publication: Journal article published
    PubMed ID: 24290378
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Abstract: Women using menopausal hormone therapy (MHT) are at increased risk of developing breast cancer (BC). To detect genetic modifiers of the association between current use of MHT and BC risk, we conducted a meta-analysis of four genome-wide case-only studies followed by replication in 11 case-control studies. We used a case-only design to assess interactions between single-nucleotide polymorphisms (SNPs) and current MHT use on risk of overall and lobular BC. The discovery stage included 2920 cases (541 lobular) from four genome-wide association studies. The top 1391 SNPs showing P values for interaction (Pint) 〈3.0x10(-3) were selected for replication using pooled case-control data from 11 studies of the Breast Cancer Association Consortium, including 7689 cases (676 lobular) and 9266 controls. Fixed-effects meta-analysis was used to derive combined Pint. No SNP reached genome-wide significance in either the discovery or combined stage. We observed effect modification of current MHT use on overall BC risk by two SNPs on chr13 near POMP (combined Pint〈/=8.9x10(-6)), two SNPs in SLC25A21 (combined Pint〈/=4.8x10(-5)), and three SNPs in PLCG2 (combined Pint〈/=4.5x10(-5)). The association between lobular BC risk was potentially modified by one SNP in TMEFF2 (combined Pint〈/=2.7x10(-5)), one SNP in CD80 (combined Pint〈/=8.2x10(-6)), three SNPs on chr17 near TMEM132E (combined Pint〈/=2.2x10(-6)), and two SNPs on chr18 near SLC25A52 (combined Pint〈/=4.6x10(-5)). In conclusion, polymorphisms in genes related to solute transportation in mitochondria, transmembrane signaling, and immune cell activation are potentially modifying BC risk associated with current use of MHT. These findings warrant replication in independent studies.
    Type of Publication: Journal article published
    PubMed ID: 24080446
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Abstract: Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS). To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH) identified SNPs that have stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HR = 0.85, 95% CI 0.80-0.90, P = 3.9 x 10(-8)). This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer.
    Type of Publication: Journal article published
    PubMed ID: 23544012
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: carcinoma ; POPULATION ; GENE-EXPRESSION ; MARKER ; OVARIAN-CANCER ; PROSTATE-CANCER ; METAANALYSIS ; susceptibility loci ; GENOME-WIDE ASSOCIATION ; PLATFORM
    Abstract: Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 x 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression.
    Type of Publication: Journal article published
    PubMed ID: 25378557
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: EXPRESSION ; REDUCED RISK ; HUMAN GENES ; SINGLE-NUCLEOTIDE POLYMORPHISMS ; BINDING-SITES ; COMMON VARIANT ; CASP8 GENE ; susceptibility loci ; GENOME-WIDE ASSOCIATION ; IDENTIFIES 3
    Abstract: Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88-0.96), rs1052532 (OR 0.97; 95% CI: 0.95-0.99), rs10719 (OR 0.97; 95% CI: 0.94-0.99), rs4687554 (OR 0.97; 95% CI: 0.95-0.99, and rs3134615 (OR 1.03; 95% CI: 1.01-1.05) located in the 3' UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects.
    Type of Publication: Journal article published
    PubMed ID: 25390939
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: EXPRESSION ; GENE ; BREAST-CANCER ; OVARIAN-CANCER ; PROSTATE-CANCER ; telomere length ; COMMON VARIANT ; susceptibility loci ; GENOME-WIDE ASSOCIATION ; FUNCTIONAL VARIATION
    Abstract: Several studies have reported associations between multiple cancer types and single-nucleotide polymorphisms (SNPs) on chromosome 5p15, which harbours TERT and CLPTM1L, but no such association has been reported with endometrial cancer. To evaluate the role of genetic variants at the TERT-CLPTM1L region in endometrial cancer risk, we carried out comprehensive fine-mapping analyses of genotyped and imputed SNPs using a custom Illumina iSelect array which includes dense SNP coverage of this region. We examined 396 SNPs (113 genotyped, 283 imputed) in 4,401 endometrial cancer cases and 28,758 controls. Single-SNP and forward/backward logistic regression models suggested evidence for three variants independently associated with endometrial cancer risk (P = 4.9 x 10(-6) to P = 7.7 x 10(-5)). Only one falls into a haplotype previously associated with other cancer types (rs7705526, in TERT intron 1), and this SNP has been shown to alter TERT promoter activity. One of the novel associations (rs13174814) maps to a second region in the TERT promoter and the other (rs62329728) is in the promoter region of CLPTM1L; neither are correlated with previously reported cancer-associated SNPs. Using TCGA RNASeq data, we found significantly increased expression of both TERT and CLPTM1L in endometrial cancer tissue compared with normal tissue (TERT P = 1.5 x 10(-18), CLPTM1L P = 1.5 x 10(-19)). Our study thus reports a novel endometrial cancer risk locus and expands the spectrum of cancer types associated with genetic variation at 5p15, further highlighting the importance of this region for cancer susceptibility.
    Type of Publication: Journal article published
    PubMed ID: 25487306
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: COHORT ; VARIANTS ; WOMEN ; HEIGHT ; METAANALYSIS ; bias ; ESTROGEN ; GENOME-WIDE ASSOCIATION ; PROGESTERONE-RECEPTOR STATUS ; INOSITOL POLYPHOSPHATES
    Abstract: A large genotyping project within the Breast Cancer Association Consortium (BCAC) recently identified 41 associations between single nucleotide polymorphisms (SNPs) and overall breast cancer (BC) risk. We investigated whether the effects of these 41 SNPs, as well as six SNPs associated with estrogen receptor (ER) negative BC risk are modified by 13 environmental risk factors for BC. Data from 22 studies participating in BCAC were pooled, comprising up to 26,633 cases and 30,119 controls. Interactions between SNPs and environmental factors were evaluated using an empirical Bayes-type shrinkage estimator. Six SNPs showed interactions with associated p-values (p(int)) 〈1.1 x 10(-3). None of the observed interactions was significant after accounting for multiple testing. The Bayesian False Discovery Probability was used to rank the findings, which indicated three interactions as being noteworthy at 1% prior probability of interaction. SNP rs6828523 was associated with increased ER-negative BC risk in women 170 cm (OR = 1.22, p = 0.017), but inversely associated with ER-negative BC risk in women 〈160 cm (OR = 0.83, p = 0.039, p(int) = 1.9 x 10(-4)). The inverse association between rs4808801 and overall BC risk was stronger for women who had had four or more pregnancies (OR = 0.85, p = 2.0 x 10(-4)), and absent in women who had had just one (OR = 0.96, p = 0.19, p(int) = 6.1 x 10(-4)). SNP rs11242675 was inversely associated with overall BC risk in never/former smokers (OR = 0.93, p = 2.8 x 10(-5)), but no association was observed in current smokers (OR = 1.07, p = 0.14, p(int) = 3.4 x 10(-4)). In conclusion, recently identified BC susceptibility loci are not strongly modified by established risk factors and the observed potential interactions require confirmation in independent studies. What's new? The recent discovery of 47 susceptibility loci associated with all or estrogen receptor-negative breast cancer provided new opportunities for genetic risk prediction but it remained unclear how exposure levels of environmental (non-genetic) risk factors influenced the risk assessment. In this gene-environment study, the international team examined interactions between the single nucleotide polymorphisms and 13 established environmental risk factors including parity, height and alcohol consumption. Notably, relative risks of breast cancer associated with the susceptibility loci were not strongly modified by environmental risk factors, a finding that, if confirmed, has important implications for the risk assessment in breast cancer.
    Type of Publication: Journal article published
    PubMed ID: 25227710
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...