Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Abstract: Pat1 RNA-binding proteins, enriched in processing bodies (P bodies), are key players in cytoplasmic 5' to 3' mRNA decay, activating decapping of mRNA in complex with the Lsm1-7 heptamer. Using co-immunoprecipitation and immunofluorescence approaches coupled with RNAi, we provide evidence for a nuclear complex of Pat1b with the Lsm2-8 heptamer, which binds to the spliceosomal U6 small nuclear RNA (snRNA). Furthermore, we establish the set of interactions connecting Pat1b/Lsm2-8/U6 snRNA/SART3 and additional U4/U6.U5 tri-small nuclear ribonucleoprotein particle (tri-snRNP) components in Cajal bodies, the site of snRNP biogenesis. RNA sequencing following Pat1b depletion revealed the preferential upregulation of mRNAs normally found in P bodies and enriched in 3' UTR AU-rich elements. Changes in 〉180 alternative splicing events were also observed, characterized by skipping of regulated exons with weak donor sites. Our data demonstrate the dual role of a decapping enhancer in pre-mRNA processing as well as in mRNA decay via distinct nuclear and cytoplasmic Lsm complexes.
    Type of Publication: Journal article published
    PubMed ID: 28768202
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: LUNG-CANCER ; HEPATOCELLULAR-CARCINOMA ; GENE-EXPRESSION ; GENOME ; IDENTIFICATION ; C-MYC ; POOR-PROGNOSIS ; INCREASED EXPRESSION ; CODING REGION ; CRD-BP
    Abstract: Selected long non-coding RNAs (lncRNAs) have been shown to play important roles in carcinogenesis. Although the cellular functions of these transcripts can be diverse, many lncRNAs regulate gene expression. In contrast, factors that control the expression of lncRNAs remain largely unknown. Here, we investigated the impact of RNA binding proteins on the expression of the liver cancer-associated lncRNA HULC (Highly Up-regulated in Liver Cancer). First, we validated the strong up-regulation of HULC in human hepatocellular carcinoma. To elucidate post-transcriptional regulatory mechanisms governing HULC expression, we applied an RNA affinity purification approach to identify specific protein interaction partners and potential regulators. This method identified the family of IGF2BPs (IGF2 mRNA-binding proteins) as specific binding partners of HULC. Depletion of IGF2BP1, also known as IMP1, but not of IGF2BP2 or -3, led to an increased HULC half-life and higher steady-state expression levels, indicating a post-transcriptional regulatory mechanism. Importantly, HULC represents the first IGF2BP substrate that is destabilized. To elucidate the mechanism by which IGF2BP1 destabilizes HULC, the CNOT1 protein was identified as a novel interaction partner of IGF2BP1. CNOT1 is the scaffold of the human CCR4-NOT deadenylase complex, a major component of the cytoplasmic RNA decay machinery. Indeed, depletion of CNOT1 increased HULC half-life and expression. Thus, IGF2BP1 acts as an adaptor protein that recruits the CCR4-NOT complex and thereby initiates the degradation of the lncRNA HULC. Conclusion: Our findings provide important insights into the regulation of lncRNA expression and identify a novel function for IGF2BP1 in RNA metabolism.
    Type of Publication: Journal article published
    PubMed ID: 23728852
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...