Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-03-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erisman, Jan Willem -- Brasseur, Guy -- Ciais, Philippe -- van Eekeren, Nick -- Theis, Thomas L -- England -- Nature. 2015 Mar 12;519(7542):151-3. doi: 10.1038/519151a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Louis Bolk Institute in Driebergen, the Netherlands. ; Max Planck Institute for Meteorology in Hamburg, Germany. ; Laboratory for Climate Sciences and the Environment, University of Versailles, France. ; Institute for Environmental Science and Policy, University of Illinois at Chicago, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25762266" target="_blank"〉PubMed〈/a〉
    Keywords: Conservation of Natural Resources/economics/*trends ; Disaster Planning/economics/methods ; Disasters/economics/*prevention & control ; Ecosystem ; Environmental Policy ; Feedback ; *Group Processes ; *Internationality ; Models, Theoretical ; Policy Making ; Risk Management/economics/*methods ; Socioeconomic Factors ; Systems Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-30
    Description: Earlier spring leaf unfolding is a frequently observed response of plants to climate warming. Many deciduous tree species require chilling for dormancy release, and warming-related reductions in chilling may counteract the advance of leaf unfolding in response to warming. Empirical evidence for this, however, is limited to saplings or twigs in climate-controlled chambers. Using long-term in situ observations of leaf unfolding for seven dominant European tree species at 1,245 sites, here we show that the apparent response of leaf unfolding to climate warming (ST, expressed in days advance of leaf unfolding per degrees C warming) has significantly decreased from 1980 to 2013 in all monitored tree species. Averaged across all species and sites, ST decreased by 40% from 4.0 +/- 1.8 days degrees C(-1) during 1980-1994 to 2.3 +/- 1.6 days degrees C(-1) during 1999-2013. The declining ST was also simulated by chilling-based phenology models, albeit with a weaker decline (24-30%) than observed in situ. The reduction in ST is likely to be partly attributable to reduced chilling. Nonetheless, other mechanisms may also have a role, such as 'photoperiod limitation' mechanisms that may become ultimately limiting when leaf unfolding dates occur too early in the season. Our results provide empirical evidence for a declining ST, but also suggest that the predicted strong winter warming in the future may further reduce ST and therefore result in a slowdown in the advance of tree spring phenology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fu, Yongshuo H -- Zhao, Hongfang -- Piao, Shilong -- Peaucelle, Marc -- Peng, Shushi -- Zhou, Guiyun -- Ciais, Philippe -- Huang, Mengtian -- Menzel, Annette -- Penuelas, Josep -- Song, Yang -- Vitasse, Yann -- Zeng, Zhenzhong -- Janssens, Ivan A -- England -- Nature. 2015 Oct 1;526(7571):104-7. doi: 10.1038/nature15402. Epub 2015 Sep 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China. ; Centre of Excellence PLECO (Plant and Vegetation Ecology), Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium. ; Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China. ; Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing 100085, China. ; Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Gif-sur-Yvette 91190, France. ; School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China. ; Ecoclimatology, Technische Universitat Munchen, Freising 85354, Germany. ; Technische Universitat Munchen, Institute for Advanced Study, Lichtenbergstrasse 2a, 85748 Garching, Germany. ; CREAF, Cerdanyola del Valles, Barcelona 08193, Catalonia, Spain. ; CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Valles, Barcelona 08193, Catalonia, Spain. ; Department of Atmospheric Sciences, University of Illinois, Urbana, Illinois 61801, USA. ; University of Neuchatel, Institute of Geography, Neuchatel 2000, Switzerland. ; WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Neuchatel 2000, Switzerland. ; WSL Institute for Snow and Avalanche Research SLF, Group Mountain Ecosystems, Davos 7260, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26416746" target="_blank"〉PubMed〈/a〉
    Keywords: Cold Temperature ; Europe ; *Global Warming ; Models, Biological ; Photoperiod ; Plant Leaves/*growth & development ; *Seasons ; Time Factors ; Trees/*growth & development
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-09-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Houweling, Sander -- Badawy, Bakr -- Baker, David F -- Basu, Sourish -- Belikov, Dmitry -- Bergamaschi, Peter -- Bousquet, Philippe -- Broquet, Gregoire -- Butler, Tim -- Canadell, Josep G -- Chen, Jing -- Chevallier, Frederic -- Ciais, Philippe -- Collatz, G James -- Denning, Scott -- Engelen, Richard -- Enting, Ian G -- Fischer, Marc L -- Fraser, Annemarie -- Gerbig, Christoph -- Gloor, Manuel -- Jacobson, Andrew R -- Jones, Dylan B A -- Heimann, Martin -- Khalil, Aslam -- Kaminski, Thomas -- Kasibhatla, Prasad S -- Krakauer, Nir Y -- Krol, Maarten -- Maki, Takashi -- Maksyutov, Shamil -- Manning, Andrew -- Meesters, Antoon -- Miller, John B -- Palmer, Paul I -- Patra, Prabir -- Peters, Wouter -- Peylin, Philippe -- Poussi, Zegbeu -- Prather, Michael J -- Randerson, James T -- Rockmann, Thomas -- Rodenbeck, Christian -- Sarmiento, Jorge L -- Schimel, David S -- Scholze, Marko -- Schuh, Andrew -- Suntharalingam, Parv -- Takahashi, Taro -- Turnbull, Jocelyn -- Yurganov, Leonid -- Vermeulen, Alex -- New York, N.Y. -- Science. 2012 Aug 31;337(6098):1038-40. doi: 10.1126/science.337.6098.1038-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22936755" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/*chemistry ; Carbon Dioxide/*analysis ; *Climate Change
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-21
    Description: The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Continuing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that climate extremes such as droughts or storms can lead to a decrease in regional ecosystem carbon stocks and therefore have the potential to negate an expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reichstein, Markus -- Bahn, Michael -- Ciais, Philippe -- Frank, Dorothea -- Mahecha, Miguel D -- Seneviratne, Sonia I -- Zscheischler, Jakob -- Beer, Christian -- Buchmann, Nina -- Frank, David C -- Papale, Dario -- Rammig, Anja -- Smith, Pete -- Thonicke, Kirsten -- van der Velde, Marijn -- Vicca, Sara -- Walz, Ariane -- Wattenbach, Martin -- England -- Nature. 2013 Aug 15;500(7462):287-95. doi: 10.1038/nature12350.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. markus.reichstein@bgc-jena.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23955228" target="_blank"〉PubMed〈/a〉
    Keywords: *Carbon Cycle ; *Climate Change ; *Ecosystem ; Plants/metabolism ; Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-04-25
    Description: Tropical forests are global epicentres of biodiversity and important modulators of climate change, and are mainly constrained by rainfall patterns. The severe short-term droughts that occurred recently in Amazonia have drawn attention to the vulnerability of tropical forests to climatic disturbances. The central African rainforests, the second-largest on Earth, have experienced a long-term drying trend whose impacts on vegetation dynamics remain mostly unknown because in situ observations are very limited. The Congolese forest, with its drier conditions and higher percentage of semi-evergreen trees, may be more tolerant to short-term rainfall reduction than are wetter tropical forests, but for a long-term drought there may be critical thresholds of water availability below which higher-biomass, closed-canopy forests transition to more open, lower-biomass forests. Here we present observational evidence for a widespread decline in forest greenness over the past decade based on analyses of satellite data (optical, thermal, microwave and gravity) from several independent sensors over the Congo basin. This decline in vegetation greenness, particularly in the northern Congolese forest, is generally consistent with decreases in rainfall, terrestrial water storage, water content in aboveground woody and leaf biomass, and the canopy backscatter anomaly caused by changes in structure and moisture in upper forest layers. It is also consistent with increases in photosynthetically active radiation and land surface temperature. These multiple lines of evidence indicate that this large-scale vegetation browning, or loss of photosynthetic capacity, may be partially attributable to the long-term drying trend. Our results suggest that a continued gradual decline of photosynthetic capacity and moisture content driven by the persistent drying trend could alter the composition and structure of the Congolese forest to favour the spread of drought-tolerant species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Liming -- Tian, Yuhong -- Myneni, Ranga B -- Ciais, Philippe -- Saatchi, Sassan -- Liu, Yi Y -- Piao, Shilong -- Chen, Haishan -- Vermote, Eric F -- Song, Conghe -- Hwang, Taehee -- England -- Nature. 2014 May 1;509(7498):86-90. doi: 10.1038/nature13265. Epub 2014 Apr 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York (SUNY), Albany, New York 12222, USA. ; I. M. Systems Group (IMSG), National Oceanic and Atmospheric Administration/National Environmental Satellite, Data, and Information Service/The Center for Satellite Applications and Research (NOAA/NESDIS/STAR), 5830 University Research Court, College Park, Maryland 20740, USA. ; Department of Earth and Environment, Boston University, Boston, Massachusetts 02215, USA. ; Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA-CNRS-UVSQ, 91191 Gif sur Yvette Cedex, France. ; Jet Propulsion Laboratory, Pasadena, California 91109, USA. ; ARC Centre of Excellence for Climate Systems Science & Climate Change Research Centre, University of New South Wales, Sydney, New South Wales 2052, Australia. ; Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China. ; Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China. ; NASA Goddard Space Flight Center, Code 619, Greenbelt, Maryland 20771, USA. ; 1] Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 29599, USA [2] School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China. ; Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 29599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24759324" target="_blank"〉PubMed〈/a〉
    Keywords: Acclimatization ; Biodiversity ; Biomass ; Chlorophyll/analysis/metabolism ; Climate Change/*statistics & numerical data ; Congo ; Droughts/statistics & numerical data ; Photosynthesis ; Plant Leaves/*growth & development/metabolism ; *Rain ; Satellite Imagery ; Seasons ; Temperature ; Time Factors ; Trees/*growth & development/metabolism ; *Tropical Climate ; Water/analysis/metabolism ; Wood/growth & development/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-06
    Description: Temperature data over the past five decades show faster warming of the global land surface during the night than during the day. This asymmetric warming is expected to affect carbon assimilation and consumption in plants, because photosynthesis in most plants occurs during daytime and is more sensitive to the maximum daily temperature, Tmax, whereas plant respiration occurs throughout the day and is therefore influenced by both Tmax and the minimum daily temperature, Tmin. Most studies of the response of terrestrial ecosystems to climate warming, however, ignore this asymmetric forcing effect on vegetation growth and carbon dioxide (CO2) fluxes. Here we analyse the interannual covariations of the satellite-derived normalized difference vegetation index (NDVI, an indicator of vegetation greenness) with Tmax and Tmin over the Northern Hemisphere. After removing the correlation between Tmax and Tmin, we find that the partial correlation between Tmax and NDVI is positive in most wet and cool ecosystems over boreal regions, but negative in dry temperate regions. In contrast, the partial correlation between Tmin and NDVI is negative in boreal regions, and exhibits a more complex behaviour in dry temperate regions. We detect similar patterns in terrestrial net CO2 exchange maps obtained from a global atmospheric inversion model. Additional analysis of the long-term atmospheric CO2 concentration record of the station Point Barrow in Alaska suggests that the peak-to-peak amplitude of CO2 increased by 23 +/- 11% for a +1 degrees C anomaly in Tmax from May to September over lands north of 51 degrees N, but decreased by 28 +/- 14% for a +1 degrees C anomaly in Tmin. These lines of evidence suggest that asymmetric diurnal warming, a process that is currently not taken into account in many global carbon cycle models, leads to a divergent response of Northern Hemisphere vegetation growth and carbon sequestration to rising temperatures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peng, Shushi -- Piao, Shilong -- Ciais, Philippe -- Myneni, Ranga B -- Chen, Anping -- Chevallier, Frederic -- Dolman, Albertus J -- Janssens, Ivan A -- Penuelas, Josep -- Zhang, Gengxin -- Vicca, Sara -- Wan, Shiqiang -- Wang, Shiping -- Zeng, Hui -- England -- Nature. 2013 Sep 5;501(7465):88-92. doi: 10.1038/nature12434.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24005415" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon/metabolism ; Carbon Cycle ; Carbon Dioxide/metabolism ; Cell Respiration ; Circadian Rhythm ; *Darkness ; Ecosystem ; *Geography ; *Global Warming ; Photosynthesis/radiation effects ; Plants/*metabolism/radiation effects ; Sunlight ; Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-05-23
    Description: The land and ocean act as a sink for fossil-fuel emissions, thereby slowing the rise of atmospheric carbon dioxide concentrations. Although the uptake of carbon by oceanic and terrestrial processes has kept pace with accelerating carbon dioxide emissions until now, atmospheric carbon dioxide concentrations exhibit a large variability on interannual timescales, considered to be driven primarily by terrestrial ecosystem processes dominated by tropical rainforests. We use a terrestrial biogeochemical model, atmospheric carbon dioxide inversion and global carbon budget accounting methods to investigate the evolution of the terrestrial carbon sink over the past 30 years, with a focus on the underlying mechanisms responsible for the exceptionally large land carbon sink reported in 2011 (ref. 2). Here we show that our three terrestrial carbon sink estimates are in good agreement and support the finding of a 2011 record land carbon sink. Surprisingly, we find that the global carbon sink anomaly was driven by growth of semi-arid vegetation in the Southern Hemisphere, with almost 60 per cent of carbon uptake attributed to Australian ecosystems, where prevalent La Nina conditions caused up to six consecutive seasons of increased precipitation. In addition, since 1981, a six per cent expansion of vegetation cover over Australia was associated with a fourfold increase in the sensitivity of continental net carbon uptake to precipitation. Our findings suggest that the higher turnover rates of carbon pools in semi-arid biomes are an increasingly important driver of global carbon cycle inter-annual variability and that tropical rainforests may become less relevant drivers in the future. More research is needed to identify to what extent the carbon stocks accumulated during wet years are vulnerable to rapid decomposition or loss through fire in subsequent years.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poulter, Benjamin -- Frank, David -- Ciais, Philippe -- Myneni, Ranga B -- Andela, Niels -- Bi, Jian -- Broquet, Gregoire -- Canadell, Josep G -- Chevallier, Frederic -- Liu, Yi Y -- Running, Steven W -- Sitch, Stephen -- van der Werf, Guido R -- England -- Nature. 2014 May 29;509(7502):600-3. doi: 10.1038/nature13376. Epub 2014 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Montana State University, Institute on Ecosystems and the Department of Ecology, Bozeman, Montana 59717, USA [2] Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA CNRS UVSQ, 91191 Gif Sur Yvette, France. ; 1] Swiss Federal Research Institute WSL, Dendroclimatology, Zurcherstrasse 111, Birmensdorf 8903, Switzerland [2] Oeschger Centre for Climate Change Research, University of Bern, CH-3012 Bern, Switzerland. ; Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA CNRS UVSQ, 91191 Gif Sur Yvette, France. ; Department of Earth and Environment, Boston University, 685 Commonwealth Avenue, Boston, Massachusetts 02215, USA. ; Faculty of Earth and Life Sciences, VU University Amsterdam, 1085 De Boelelaan, 1081HV, Amsterdam, The Netherlands. ; Global Carbon Project, CSIRO, Marine and Atmospheric Research, Canberra, Australian Capital Territory 2601, Australia. ; ARC Centre of Excellence for Climate Systems Science & Climate Change Research Centre, University of New South Wales, Sydney, New South Wales 2052, Australia. ; Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana 59812, USA. ; College of Engineering, Computing and Mathematics, University of Exeter, Exeter EX4 4QF, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847888" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; Australia ; Carbon Dioxide/analysis ; *Carbon Sequestration ; *Desert Climate ; *Ecosystem ; El Nino-Southern Oscillation ; Fires ; Models, Theoretical ; Rain ; Seasons ; Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-01-28
    Description: Earth system models project that the tropical land carbon sink will decrease in size in response to an increase in warming and drought during this century, probably causing a positive climate feedback. But available data are too limited at present to test the predicted changes in the tropical carbon balance in response to climate change. Long-term atmospheric carbon dioxide data provide a global record that integrates the interannual variability of the global carbon balance. Multiple lines of evidence demonstrate that most of this variability originates in the terrestrial biosphere. In particular, the year-to-year variations in the atmospheric carbon dioxide growth rate (CGR) are thought to be the result of fluctuations in the carbon fluxes of tropical land areas. Recently, the response of CGR to tropical climate interannual variability was used to put a constraint on the sensitivity of tropical land carbon to climate change. Here we use the long-term CGR record from Mauna Loa and the South Pole to show that the sensitivity of CGR to tropical temperature interannual variability has increased by a factor of 1.9 +/- 0.3 in the past five decades. We find that this sensitivity was greater when tropical land regions experienced drier conditions. This suggests that the sensitivity of CGR to interannual temperature variations is regulated by moisture conditions, even though the direct correlation between CGR and tropical precipitation is weak. We also find that present terrestrial carbon cycle models do not capture the observed enhancement in CGR sensitivity in the past five decades. More realistic model predictions of future carbon cycle and climate feedbacks require a better understanding of the processes driving the response of tropical ecosystems to drought and warming.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Xuhui -- Piao, Shilong -- Ciais, Philippe -- Friedlingstein, Pierre -- Myneni, Ranga B -- Cox, Peter -- Heimann, Martin -- Miller, John -- Peng, Shushi -- Wang, Tao -- Yang, Hui -- Chen, Anping -- England -- Nature. 2014 Feb 13;506(7487):212-5. doi: 10.1038/nature12915. Epub 2014 Jan 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China. ; 1] Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China [2] Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China. ; 1] Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China [2] Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, 91191 Gif-sur-Yvette, France. ; College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK. ; Department of Earth and Environment, Boston University, Boston, Massachusetts 02215, USA. ; Max Planck Institute for Biogeochemistry, 07701 Jena, Germany. ; 1] Global Monitoring Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, Colorado 80305, USA [2] Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA. ; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544-1003, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463514" target="_blank"〉PubMed〈/a〉
    Keywords: Antarctic Regions ; Atmosphere/chemistry ; Carbon/analysis/metabolism ; Carbon Cycle/*physiology ; Carbon Dioxide/metabolism ; Carbon Sequestration ; Droughts ; Ecosystem ; Global Warming ; Hawaii ; History, 20th Century ; History, 21st Century ; Humidity ; Models, Theoretical ; Rain ; *Temperature ; *Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-21
    Description: Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = +/-7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Zhu -- Guan, Dabo -- Wei, Wei -- Davis, Steven J -- Ciais, Philippe -- Bai, Jin -- Peng, Shushi -- Zhang, Qiang -- Hubacek, Klaus -- Marland, Gregg -- Andres, Robert J -- Crawford-Brown, Douglas -- Lin, Jintai -- Zhao, Hongyan -- Hong, Chaopeng -- Boden, Thomas A -- Feng, Kuishuang -- Peters, Glen P -- Xi, Fengming -- Liu, Junguo -- Li, Yuan -- Zhao, Yu -- Zeng, Ning -- He, Kebin -- England -- Nature. 2015 Aug 20;524(7565):335-8. doi: 10.1038/nature14677.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉John F. Kennedy School of Government, Harvard University, Cambridge, Massachusetts 02138, USA. ; Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China. ; Resnick Sustainability Institute, California Institute of Technology, Pasadena, California 91125, USA. ; Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University, Beijing 100084, China. ; School of International Development, University of East Anglia, Norwich NR4 7TJ, UK. ; CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China. ; Department of Earth System Science, University of California, Irvine, California 92697, USA. ; Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, CE Orme des Merisiers, 91191 Gif sur Yvette Cedex, France. ; State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, China. ; CNRS and UJF Grenoble 1, Laboratoire de Glaciologie et Geophysique de l'Environnement (LGGE, UMR5183), 38041 Grenoble, France. ; Department of Geographical Sciences, University of Maryland, College Park, Maryland 20742, USA. ; Research Institute for Environment, Energy, and Economics, Appalachian State University, Boone, North Carolina 28608, USA. ; Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. ; Cambridge Centre for Climate Change Mitigation Research, Department of Land Economy, University of Cambridge, 19 Silver Street, Cambridge CB3 9EP, UK. ; Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China. ; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China. ; Center for International Climate and Environmental Research-Oslo (CICERO), N-0318 Oslo, Norway. ; CAS Key Laboratory of Pollution Ecology and Environmental Engineering, Chinese Academy of Sciences, Shenyang 110016, China. ; School of Nature Conservation, Beijing Forestry University, Beijing 10083, China. ; Ecosystems Services &Management Program, International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria. ; School of Environmental Science and Engineering, South University of Science and Technology of China, Shenzhen 518055, China. ; State Key Laboratory of Pollution Control &Resource Reuse and School of the Environment, Nanjing University, Nanjing 210023, China. ; Department of Atmospheric and Oceanic Science and Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20742-2425, USA. ; Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26289204" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon/*analysis ; Carbon Dioxide/analysis ; Carbon Sequestration ; China ; Climate Change ; Coal/utilization ; Construction Materials/*supply & distribution ; Fossil Fuels/*utilization ; Trees/metabolism ; Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-03-11
    Description: The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 +/- 3.8 (top down) and 5.4 +/- 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tian, Hanqin -- Lu, Chaoqun -- Ciais, Philippe -- Michalak, Anna M -- Canadell, Josep G -- Saikawa, Eri -- Huntzinger, Deborah N -- Gurney, Kevin R -- Sitch, Stephen -- Zhang, Bowen -- Yang, Jia -- Bousquet, Philippe -- Bruhwiler, Lori -- Chen, Guangsheng -- Dlugokencky, Edward -- Friedlingstein, Pierre -- Melillo, Jerry -- Pan, Shufen -- Poulter, Benjamin -- Prinn, Ronald -- Saunois, Marielle -- Schwalm, Christopher R -- Wofsy, Steven C -- England -- Nature. 2016 Mar 10;531(7593):225-8. doi: 10.1038/nature16946.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama 36849, USA. ; Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Iowa 50011, USA. ; Laboratoire des Sciences du Climat et de l'Environnement, 91191 Gif sur Yvette, France. ; Department of Global Ecology, Carnegie Institution for Science, Stanford, California 94305, USA. ; Global Carbon Project, CSIRO Oceans and Atmosphere Research, GPO Box 3023, Canberra, Australian Capital Territory 2601, Australia. ; Department of Environmental Sciences, Emory University, Atlanta, Georgia 30322, USA. ; School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, Arizona 86011, USA. ; School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA. ; College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK. ; NOAA Earth System Research Laboratory, Global Monitoring Division, Boulder, Colorado 80305, USA. ; Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. ; College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK. ; The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA. ; Institute of Ecosystems and Department of Ecology, Montana State University, Bozeman, Montana 59717, USA. ; Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; Woods Hole Research Center, Falmouth, Massachusetts 02540, USA. ; Department of Earth and Planetary Science, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26961656" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/statistics & numerical data ; Asia ; Atmosphere/*chemistry ; Carbon Dioxide/analysis/*metabolism ; *Ecosystem ; Global Warming/prevention & control/*statistics & numerical data ; Greenhouse Effect/prevention & control/*statistics & numerical data ; Human Activities/statistics & numerical data ; Methane/analysis/*metabolism ; Nitrous Oxide/analysis/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...