Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-10-11
    Description: Progressive phases of multiple sclerosis are associated with inhibited differentiation of the progenitor cell population that generates the mature oligodendrocytes required for remyelination and disease remission. To identify selective inducers of oligodendrocyte differentiation, we performed an image-based screen for myelin basic protein (MBP) expression using primary rat optic-nerve-derived progenitor cells. Here we show that among the most effective compounds identifed was benztropine, which significantly decreases clinical severity in the experimental autoimmune encephalomyelitis (EAE) model of relapsing-remitting multiple sclerosis when administered alone or in combination with approved immunosuppressive treatments for multiple sclerosis. Evidence from a cuprizone-induced model of demyelination, in vitro and in vivo T-cell assays and EAE adoptive transfer experiments indicated that the observed efficacy of this drug results directly from an enhancement of remyelination rather than immune suppression. Pharmacological studies indicate that benztropine functions by a mechanism that involves direct antagonism of M1 and/or M3 muscarinic receptors. These studies should facilitate the development of effective new therapies for the treatment of multiple sclerosis that complement established immunosuppressive approaches.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431622/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431622/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deshmukh, Vishal A -- Tardif, Virginie -- Lyssiotis, Costas A -- Green, Chelsea C -- Kerman, Bilal -- Kim, Hyung Joon -- Padmanabhan, Krishnan -- Swoboda, Jonathan G -- Ahmad, Insha -- Kondo, Toru -- Gage, Fred H -- Theofilopoulos, Argyrios N -- Lawson, Brian R -- Schultz, Peter G -- Lairson, Luke L -- K99 MH101634/MH/NIMH NIH HHS/ -- R01 AR053228/AR/NIAMS NIH HHS/ -- R21 AR065384/AR/NIAMS NIH HHS/ -- R37 AR039555/AR/NIAMS NIH HHS/ -- England -- Nature. 2013 Oct 17;502(7471):327-32. doi: 10.1038/nature12647. Epub 2013 Oct 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The Scripps Research Institute, 10550, North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24107995" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antiparkinson Agents/pharmacology/therapeutic use ; Benztropine/pharmacology/*therapeutic use ; Cell Differentiation/drug effects ; Coculture Techniques ; Cuprizone/pharmacology/therapeutic use ; Encephalomyelitis, Autoimmune, Experimental/chemically induced/*drug ; therapy/pathology ; Female ; Fingolimod Hydrochloride ; Immune System/drug effects/immunology ; Mice ; Mice, Inbred C57BL ; *Models, Biological ; Multiple Sclerosis/*drug therapy/pathology ; Myelin Proteolipid Protein/pharmacology ; Myelin Sheath/*drug effects/metabolism/pathology ; Oligodendroglia/cytology/*drug effects/metabolism/pathology ; Optic Nerve/cytology ; Propylene Glycols/pharmacology/therapeutic use ; Rats ; Receptor, Muscarinic M1/antagonists & inhibitors/metabolism ; Receptor, Muscarinic M3/antagonists & inhibitors/metabolism ; Recurrence ; Regeneration/*drug effects ; Sphingosine/analogs & derivatives/pharmacology/therapeutic use ; Stem Cells/cytology/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-19
    Description: Most malaria drug development focuses on parasite stages detected in red blood cells, even though, to achieve eradication, next-generation drugs active against both erythrocytic and exo-erythrocytic forms would be preferable. We applied a multifactorial approach to a set of 〉4000 commercially available compounds with previously demonstrated blood-stage activity (median inhibitory concentration 〈 1 micromolar) and identified chemical scaffolds with potent activity against both forms. From this screen, we identified an imidazolopiperazine scaffold series that was highly enriched among compounds active against Plasmodium liver stages. The orally bioavailable lead imidazolopiperazine confers complete causal prophylactic protection (15 milligrams/kilogram) in rodent models of malaria and shows potent in vivo blood-stage therapeutic activity. The open-source chemical tools resulting from our effort provide starting points for future drug discovery programs, as well as opportunities for researchers to investigate the biology of exo-erythrocytic forms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3473092/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3473092/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meister, Stephan -- Plouffe, David M -- Kuhen, Kelli L -- Bonamy, Ghislain M C -- Wu, Tao -- Barnes, S Whitney -- Bopp, Selina E -- Borboa, Rachel -- Bright, A Taylor -- Che, Jianwei -- Cohen, Steve -- Dharia, Neekesh V -- Gagaring, Kerstin -- Gettayacamin, Montip -- Gordon, Perry -- Groessl, Todd -- Kato, Nobutaka -- Lee, Marcus C S -- McNamara, Case W -- Fidock, David A -- Nagle, Advait -- Nam, Tae-gyu -- Richmond, Wendy -- Roland, Jason -- Rottmann, Matthias -- Zhou, Bin -- Froissard, Patrick -- Glynne, Richard J -- Mazier, Dominique -- Sattabongkot, Jetsumon -- Schultz, Peter G -- Tuntland, Tove -- Walker, John R -- Zhou, Yingyao -- Chatterjee, Arnab -- Diagana, Thierry T -- Winzeler, Elizabeth A -- R01 AI079709/AI/NIAID NIH HHS/ -- R01 AI079709-04/AI/NIAID NIH HHS/ -- R01 AI090141/AI/NIAID NIH HHS/ -- R01 AI090141-02/AI/NIAID NIH HHS/ -- R01AI090141/AI/NIAID NIH HHS/ -- WT078285/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Dec 9;334(6061):1372-7. doi: 10.1126/science.1211936. Epub 2011 Nov 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22096101" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antimalarials/chemistry/pharmacokinetics/*pharmacology/therapeutic use ; Cell Line, Tumor ; *Drug Discovery ; Drug Evaluation, Preclinical ; Drug Resistance ; Erythrocytes/parasitology ; Humans ; Imidazoles/chemistry/pharmacokinetics/*pharmacology/therapeutic use ; Liver/*parasitology ; Malaria/*drug therapy/parasitology/prevention & control ; Mice ; Mice, Inbred BALB C ; Molecular Structure ; Piperazines/chemistry/pharmacokinetics/*pharmacology/therapeutic use ; Plasmodium/cytology/*drug effects/growth & development/physiology ; Plasmodium berghei/cytology/drug effects/growth & development/physiology ; Plasmodium falciparum/cytology/drug effects/growth & development/physiology ; Plasmodium yoelii/cytology/drug effects/growth & development/physiology ; Polymorphism, Single Nucleotide ; Protozoan Proteins/chemistry/genetics/metabolism ; Random Allocation ; Small Molecule Libraries ; Sporozoites/drug effects/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-07-17
    Description: Impairment of the circadian clock has been associated with numerous disorders, including metabolic disease. Although small molecules that modulate clock function might offer therapeutic approaches to such diseases, only a few compounds have been identified that selectively target core clock proteins. From an unbiased cell-based circadian phenotypic screen, we identified KL001, a small molecule that specifically interacts with cryptochrome (CRY). KL001 prevented ubiquitin-dependent degradation of CRY, resulting in lengthening of the circadian period. In combination with mathematical modeling, our studies using KL001 revealed that CRY1 and CRY2 share a similar functional role in the period regulation. Furthermore, KL001-mediated CRY stabilization inhibited glucagon-induced gluconeogenesis in primary hepatocytes. KL001 thus provides a tool to study the regulation of CRY-dependent physiology and aid development of clock-based therapeutics of diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589997/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589997/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hirota, Tsuyoshi -- Lee, Jae Wook -- St John, Peter C -- Sawa, Mariko -- Iwaisako, Keiko -- Noguchi, Takako -- Pongsawakul, Pagkapol Y -- Sonntag, Tim -- Welsh, David K -- Brenner, David A -- Doyle, Francis J 3rd -- Schultz, Peter G -- Kay, Steve A -- GM074868/GM/NIGMS NIH HHS/ -- GM085764/GM/NIGMS NIH HHS/ -- GM096873/GM/NIGMS NIH HHS/ -- MH051573/MH/NIMH NIH HHS/ -- MH082945/MH/NIMH NIH HHS/ -- P50 GM085764/GM/NIGMS NIH HHS/ -- R01 GM041804/GM/NIGMS NIH HHS/ -- R01 GM074868/GM/NIGMS NIH HHS/ -- R01 GM096873/GM/NIGMS NIH HHS/ -- R01 MH051573/MH/NIMH NIH HHS/ -- R01 MH082945/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 31;337(6098):1094-7. doi: 10.1126/science.1223710. Epub 2012 Jul 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22798407" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; Animals ; Carbazoles/chemistry/isolation & purification/*pharmacology ; Cell Line, Tumor ; Circadian Clocks/*drug effects ; Cryptochromes/*agonists/metabolism ; Gluconeogenesis/drug effects/genetics ; Glucose-6-Phosphatase/genetics ; HEK293 Cells ; Hepatocytes/drug effects/metabolism ; Humans ; Liver/cytology/drug effects/metabolism ; Mice ; Molecular Sequence Data ; Phosphoenolpyruvate Carboxykinase (GTP)/genetics ; Protein Stability/drug effects ; Proteolysis/drug effects ; *Small Molecule Libraries ; Sulfonamides/chemistry/isolation & purification/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-10-19
    Description: We describe the construction and characterization of a genomically recoded organism (GRO). We replaced all known UAG stop codons in Escherichia coli MG1655 with synonymous UAA codons, which permitted the deletion of release factor 1 and reassignment of UAG translation function. This GRO exhibited improved properties for incorporation of nonstandard amino acids that expand the chemical diversity of proteins in vivo. The GRO also exhibited increased resistance to T7 bacteriophage, demonstrating that new genetic codes could enable increased viral resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lajoie, Marc J -- Rovner, Alexis J -- Goodman, Daniel B -- Aerni, Hans-Rudolf -- Haimovich, Adrian D -- Kuznetsov, Gleb -- Mercer, Jaron A -- Wang, Harris H -- Carr, Peter A -- Mosberg, Joshua A -- Rohland, Nadin -- Schultz, Peter G -- Jacobson, Joseph M -- Rinehart, Jesse -- Church, George M -- Isaacs, Farren J -- 1DP5OD009172-01/OD/NIH HHS/ -- DP5 OD009172/OD/NIH HHS/ -- K01 DK089006/DK/NIDDK NIH HHS/ -- K01DK089006/DK/NIDDK NIH HHS/ -- T32 GM007205/GM/NIGMS NIH HHS/ -- T32GM07205/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 18;342(6156):357-60. doi: 10.1126/science.1241459.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24136966" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution/genetics ; Amino Acids/*genetics ; Bacteriophage T7/*physiology ; Codon, Terminator/*genetics ; Escherichia coli/*genetics/*virology ; Escherichia coli Proteins/genetics ; Genetic Engineering ; Genome, Bacterial ; Organisms, Genetically Modified/*genetics/*virology ; Peptide Chain Termination, Translational/genetics ; Peptide Termination Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-02-24
    Description: The fleeting lifetimes of the transition states (TSs) of chemical reactions make determination of their three-dimensional structures by diffraction methods a challenge. Here, we used packing interactions within the core of a protein to stabilize the planar TS conformation for rotation around the central carbon-carbon bond of biphenyl so that it could be directly observed by x-ray crystallography. The computational protein design software Rosetta was used to design a pocket within threonyl-transfer RNA synthetase from the thermophile Pyrococcus abyssi that forms complementary van der Waals interactions with a planar biphenyl. This latter moiety was introduced biosynthetically as the side chain of the noncanonical amino acid p-biphenylalanine. Through iterative rounds of computational design and structural analysis, we identified a protein in which the side chain of p-biphenylalanine is trapped in the energetically disfavored, coplanar conformation of the TS of the bond rotation reaction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581533/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581533/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pearson, Aaron D -- Mills, Jeremy H -- Song, Yifan -- Nasertorabi, Fariborz -- Han, Gye Won -- Baker, David -- Stevens, Raymond C -- Schultz, Peter G -- 2 R01 GM097206-05/GM/NIGMS NIH HHS/ -- F32 GM099210/GM/NIGMS NIH HHS/ -- F32GM099210/GM/NIGMS NIH HHS/ -- R01 GM097206/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):863-7. doi: 10.1126/science.aaa2424.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. ; Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA. ; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute (HHMI), University of Washington, Seattle, WA 98195, USA. ; Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. schultz@scripps.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700516" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/*analogs & derivatives/chemistry ; Archaeal Proteins/*chemistry ; Biphenyl Compounds/*chemistry ; Computer Simulation ; Computer-Aided Design ; Crystallography, X-Ray ; Entropy ; Models, Chemical ; Protein Structure, Secondary ; Pyrococcus abyssi/*enzymology ; Software ; Threonine-tRNA Ligase/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-07-29
    Description: Epstein-Barr virus-induced gene 2 (EBI2, also known as GPR183) is a G-protein-coupled receptor that is required for humoral immune responses; polymorphisms in the receptor have been associated with inflammatory autoimmune diseases. The natural ligand for EBI2 has been unknown. Here we describe the identification of 7alpha,25-dihydroxycholesterol (also called 7alpha,25-OHC or 5-cholesten-3beta,7alpha,25-triol) as a potent and selective agonist of EBI2. Functional activation of human EBI2 by 7alpha,25-OHC and closely related oxysterols was verified by monitoring second messenger readouts and saturable, high-affinity radioligand binding. Furthermore, we find that 7alpha,25-OHC and closely related oxysterols act as chemoattractants for immune cells expressing EBI2 by directing cell migration in vitro and in vivo. A critical enzyme required for the generation of 7alpha,25-OHC is cholesterol 25-hydroxylase (CH25H). Similar to EBI2 receptor knockout mice, mice deficient in CH25H fail to position activated B cells within the spleen to the outer follicle and mount a reduced plasma cell response after an immune challenge. This demonstrates that CH25H generates EBI2 biological activity in vivo and indicates that the EBI2-oxysterol signalling pathway has an important role in the adaptive immune response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297623/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297623/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hannedouche, Sebastien -- Zhang, Juan -- Yi, Tangsheng -- Shen, Weijun -- Nguyen, Deborah -- Pereira, Joao P -- Guerini, Danilo -- Baumgarten, Birgit U -- Roggo, Silvio -- Wen, Ben -- Knochenmuss, Richard -- Noel, Sophie -- Gessier, Francois -- Kelly, Lisa M -- Vanek, Mirka -- Laurent, Stephane -- Preuss, Inga -- Miault, Charlotte -- Christen, Isabelle -- Karuna, Ratna -- Li, Wei -- Koo, Dong-In -- Suply, Thomas -- Schmedt, Christian -- Peters, Eric C -- Falchetto, Rocco -- Katopodis, Andreas -- Spanka, Carsten -- Roy, Marie-Odile -- Detheux, Michel -- Chen, Yu Alice -- Schultz, Peter G -- Cho, Charles Y -- Seuwen, Klaus -- Cyster, Jason G -- Sailer, Andreas W -- R01 AI040098/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Jul 27;475(7357):524-7. doi: 10.1038/nature10280.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Euroscreen S.A., 6041 Gosselies, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21796212" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibody Formation/immunology ; B-Lymphocytes ; Cell Line ; Cell Movement/drug effects ; Gene Expression Profiling ; Gene Expression Regulation/drug effects/immunology ; Humans ; Hydroxycholesterols/chemistry/*pharmacology ; Liver/chemistry ; Mice ; Mice, Knockout ; Receptors, Cell Surface/*immunology ; Receptors, G-Protein-Coupled ; Sheep ; T-Lymphocytes/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-04-12
    Description: Osteoarthritis (OA) is a degenerative joint disease that involves the destruction of articular cartilage and eventually leads to disability. Molecules that promote the selective differentiation of multipotent mesenchymal stem cells (MSCs) into chondrocytes may stimulate the repair of damaged cartilage. Using an image-based high-throughput screen, we identified the small molecule kartogenin, which promotes chondrocyte differentiation (median effective concentration = 100 nM), shows chondroprotective effects in vitro, and is efficacious in two OA animal models. Kartogenin binds filamin A, disrupts its interaction with the transcription factor core-binding factor beta subunit (CBFbeta), and induces chondrogenesis by regulating the CBFbeta-RUNX1 transcriptional program. This work provides new insights into the control of chondrogenesis that may ultimately lead to a stem cell-based therapy for osteoarthritis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, Kristen -- Zhu, Shoutian -- Tremblay, Matthew S -- Payette, Joshua N -- Wang, Jianing -- Bouchez, Laure C -- Meeusen, Shelly -- Althage, Alana -- Cho, Charles Y -- Wu, Xu -- Schultz, Peter G -- New York, N.Y. -- Science. 2012 May 11;336(6082):717-21. doi: 10.1126/science.1215157. Epub 2012 Apr 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA. kjohnson@gnf.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22491093" target="_blank"〉PubMed〈/a〉
    Keywords: Anilides/administration & dosage/chemistry/*pharmacology/therapeutic use ; Animals ; Cartilage, Articular/*cytology ; Cattle ; Cell Nucleus/metabolism ; Chondrocytes/cytology/*drug effects/metabolism/physiology ; *Chondrogenesis ; Contractile Proteins/metabolism ; Core Binding Factor Alpha 2 Subunit/metabolism ; Core Binding Factor beta Subunit/metabolism ; Disease Models, Animal ; Filamins ; High-Throughput Screening Assays ; Humans ; Mesenchymal Stromal Cells/cytology/*drug effects/physiology ; Mice ; Microfilament Proteins/metabolism ; Osteoarthritis/*drug therapy/pathology/physiopathology ; Phthalic Acids/administration & dosage/chemistry/*pharmacology/therapeutic use ; Regeneration ; Small Molecule Libraries ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 338 (1989), S. 269-271 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] To expand the scope of antibody catalysis we targeted reac-tions involving proton abstraction from a carbon centre. This class of reactions includes elimination and isomerization reac-tions and aldol and Claisen condensations16'18. Proton abstrac-tion in enzymes is often performed by carboxylate ...
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A library of 256 differently doped thin films of (BaxSr1−x)TiO3 (where 0.5〈x〈1.0) was generated on a 1 in.×1 in. LaAlO3 substrate using multistep thin-film deposition techniques together with a quaternary masking strategy. Appropriate postannealing processing afforded high-quality epitaxial thin films. The microwave properties, i.e., dielectric constant and loss tangent, of samples in the library were characterized with a scanning-tip microwave near-field microscope at 1 GHz, and the results were found to be consistent with measurements made with interdigital electrodes. Specific dopants were found to significantly affect the dielectric constant and tangent loss. Tungsten, in particular, reduces the tangent loss. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...