Publication Date:
2013-08-02
Description:
Sensitive probing of temperature variations on nanometre scales is an outstanding challenge in many areas of modern science and technology. In particular, a thermometer capable of subdegree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool in many areas of biological, physical and chemical research. Possibilities range from the temperature-induced control of gene expression and tumour metabolism to the cell-selective treatment of disease and the study of heat dissipation in integrated circuits. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the subcellular level. Here we demonstrate a new approach to nanoscale thermometry that uses coherent manipulation of the electronic spin associated with nitrogen-vacancy colour centres in diamond. Our technique makes it possible to detect temperature variations as small as 1.8 mK (a sensitivity of 9 mK Hz(-1/2)) in an ultrapure bulk diamond sample. Using nitrogen-vacancy centres in diamond nanocrystals (nanodiamonds), we directly measure the local thermal environment on length scales as short as 200 nanometres. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the subcellular level, enabling unique potential applications in life sciences.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4221854/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉 〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4221854/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kucsko, G -- Maurer, P C -- Yao, N Y -- Kubo, M -- Noh, H J -- Lo, P K -- Park, H -- Lukin, M D -- 1P50HG006193-01/HG/NHGRI NIH HHS/ -- 5DP1OD003893-03/OD/NIH HHS/ -- DP1 DA035083/DA/NIDA NIH HHS/ -- England -- Nature. 2013 Aug 1;500(7460):54-8. doi: 10.1038/nature12373.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23903748" target="_blank"〉PubMed〈/a〉
Keywords:
Cell Survival
;
Color
;
Fibroblasts/*cytology
;
Gold
;
Humans
;
Metal Nanoparticles/*chemistry
;
Nanodiamonds/*chemistry
;
Nanotechnology/instrumentation
;
Nitrogen
;
Single-Cell Analysis
;
Temperature
;
*Thermometers
;
Thermometry/*instrumentation/*methods
Print ISSN:
0028-0836
Electronic ISSN:
1476-4687
Topics:
Biology
,
Chemistry and Pharmacology
,
Medicine
,
Natural Sciences in General
,
Physics
Permalink