Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: Mitochondrial genome size ; Repeated sequences ; Ribosomal RNA genes ; Nonflowering plants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We report the first estimates of genome size and complexity for mitochondrial DNAs (mtDNAs) from nonflowering land plants. The mtDNA of Onoclea sensibilis (sensitive fern) is approximately 300 kb in size, while that of Equisetum arvense (common horsetail) is at least 200 kb. Sufficient mtDNA of Onoclea was available to permit an estimation of the copy number and a linkage analysis of nine mitochondrial genes. Six of these genes appear to be present in only one or two copies in the Onoclea genome, whereas three other genes are present in multiple copies. Five of the approximately ten genes encoding 26S rRNA are located on a large, 〉10kb, dispersed repeat that also contains closely linked genes for 18S rRNA and the alpha subunit of ATPase (atpA). The other 26S genes belong to a second dispersed repeat family of 〉8 kb whose elements do not contain any other identified genes. Because flowering plant mtDNAs are also large and contain dispersed, gene-containing, repeats, it appears that these features arose early in the evolution of land plants, or perhaps even in their green algal ancestors.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Brassica ; Mitochondrial DNA ; nad4 ; Group II introns
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The gene nad4, encoding subunit four of the mitochondrial NADH dehydrogenase complex I, has been isolated and characterized from turnip, Brassica campestris. The 8 kb turnip nad4 gene contains four exons, which potentially encode a NAD4 polypeptide of 495 amino acids, and three large group II introns. Northern analysis identifies an abundant 2 kb transcript that most likely serves as the nad4 mRNA, while several larger transcripts (putative splicing intermediates) are also detected. Analysis of the nad4 locus in three distantly related dicotyledons indicates that introns 2 and 3 are optional. Mung bean has the same nad4 organization as turnip, whereas spinach nad4 contains introns 1 and 3, and lettuce nad4 has intron 1 only. We infer that all three group II introns were present in the nad4 gene of an angiosperm common ancestor and have persisted in certain lineages for over 200 million years, with two of the introns having been lost in other lineages.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0983
    Keywords: nad6 ; Flowering plants ; Mitochondrial gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have isolated the Brassica campestris mitochondrial gene nad6, coding for subunit six of NADH dehydrogenase. The deduced amino-acid sequence of this gene shows considerable similarity to mitochondrially encoded NAD6 proteins of other organisms as well as to NAD6 proteins coded for by plant chloroplast DNAs. The B. campestris nad6 gene appears to lack introns and produces and abundant transcript which is comparable in size to a previously described, unidentified transcript (#18) mapped to the B. campestris mitochondrial genome. An alignment of NAD6 proteins (deduced from DNA sequences) suggests that B. campestris nad6 transcripts are edited. Southern-blot hybridization indicates that nad6 is present in the mitochondrial genome of all of a wide range of flowering plant species examined.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0983
    Keywords: Key words Chloroplast DNA rearrangements ; Trachelium ; Inversions ; Transposition ; Gene loss
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Comprehensive gene mapping reveals that the chloroplast genome of Trachelium caeruleum is highly rearranged relative to those of other land plants. Evolutionary scenarios that consist of seven to ten inversions, one or two transpositions, both expansion and contraction of the typically size-conserved inverted repeat, a presumed gene loss, deletions within two large open reading frames and several insertions, are sufficient to derive the Trachelium arrangement from the ancestral angiosperm chloroplast DNA arrangement. Two of the rearrangements disrupt transcriptional units that are otherwise conserved among land plants. At least five families of small dispersed repeats exist in the Trachelium chloroplast genome. Most of the repeats are associated with inversion endpoints and may have facilitated inversions through recombination across homologous repeats.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 10 (1986), S. 823-833 
    ISSN: 1432-0983
    Keywords: Inverted repeat ; Gene order ; Chloroplast genome arrangement ; Vascular plant
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have constructed the first physical map of a gymnosperm chloroplast genome and compared its organization with those of a fern and several angiosperms by heterologous filter hybridization. The chloroplast genome of the gymnosperm Ginkgo biloba consists of a 158 kb circular chromosome that contains a ribosomal RNA-encoding inverted repeat approximately 17 kb in size. Gene mapping experiments demonstrate a remarkable similarity in the linear order and absolute positions of the ribosomal RNA genes and of 17 protein genes in the cpDNAs of Ginkgo biloba, the fern Osmunda cinnamomea and the angiosperm Spinacia oleracea. Moreover, filter hybridizations using as probes cloned fragments that cover the entirety of the angiosperm chloroplast genome reveal a virtually colinear arrangement of homologous sequence elements in these genomes representing three divisions of vascular plants that diverged some 200–400 million years ago. The only major difference in chloroplast genome structure among these vascular plants involves the size of the rRNA-encoding inverted repeat, which is only 10 kb in Osmunda, 17 kb in Ginkgo, and about 25 kb in most angiosperms. This size variation appears to be the result of spreading of the repeat through previously single copy sequences, or the reverse process of shrinkage, unaccompanied by any overall change in genome complexity.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0983
    Keywords: Inverted repeat ; Colinearity ; Flip-flop recombination ; Fern chloroplast DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The evolution and recombination of chloroplast genome structure in the fern genus Osmunda were studied by comparative restriction site mapping and filter hybridization of chloroplast DNAs (cpDNAs) from three species — 0. cinnamomea, 0. claytoniana and 0. regalis. The three 144 kb circular genomes were found to be colinear in organization, indicating that no major inversions or transpositions had occurred during the approximately 70 million years since their radiation from a common ancestor. Although overall size and sequence arrangement are highly conserved in the three genomes, they differ by an extensive series of small deletions and insertions, ranging in size from 50 bp to 350 by and scattered more or less at random throughout the circular chromosomes. All three chloroplast genomes contain a large inverted repeat of approximately 10 kb in size. However, hybridizations using cloned fragments from the 0. cinnamomea and 0. regalis genomes revealed the absence of any dispersed repeats in at least 50% of the genome. Analysis with restriction enzymes that fail to cleave the 10 kb inverted repeat indicated that each of the three fern chloroplast genomes exists as an equimolar population of two isomeric circles differing only in the relative orientation of their two single copy regions. These two inversion isomers are inferred to result from high frequency intramolecular recombination between paired inverted repeat segments. In all aspects of their general organization, recombinational heterogeneity, and extent of structural rearrangement and length mutation, these fern chloroplast genomes resemble very closely the chloroplast genomes of most angiosperms.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 11 (1987), S. 565-570 
    ISSN: 1432-0983
    Keywords: Restriction map ; Circular chromosome ; Recombination repeat ; Inversion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Restriction mapping studies reveal that the mitochondrial genome of white mustard (Brassica hirta) exists in the form of a single circular 208 kb chromosome. The B. hirta genome has only one copy of the two sequences which, in several related Brassica species, are duplicated and undergo intramolecular recombination. This first report of a plant mitochondrial DNA that does not exist in a multipartite structure indicates that high frequency intramolecular recombination is not an obligatory feature of plant mitochondrial genomes. Heterologous filter hybridizatios reveal that the mitochondrial genomes of B. hirta and B. campestris have diverged radically in sequence arrangement, as the result of approximately 10 large inversions. At the same time, however, the two genomes are similar in size, sequence content, and primary sequence.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0983
    Keywords: Restriction maps ; Gene organization ; Chloroplast DNA ; Inversion ; Asteraceae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have cloned into plasmids 17 of 18 lettuce chloroplast DNA SacI fragments covering 96% of the genome. The cloned fragments were used to construct cleavage maps for 10 restriction enzymes for the chloroplast genomes of lettuce (Lactuca sativa) and Barnadesia caryophylla, two distantly related species in the sunflower family (Asteraceae). Both genomes are approximately 151 kb in size and contain a 25 kb inverted repeat. We also mapped the position and orientation of 37 chloroplast DNA genes. The mapping studies reveal that chloroplast DNAs of lettuce and Barnadesia differ by a 22 kb inversion in the large single copy region. Barnadesia has retained the primitive land plant genome arrangement, while the inversion has occurred in a lettuce lineage. The endpoints of the derived lettuce inversion were located by comparison to the well-characterized spinach and tobacco genomes. Both endpoints are located in intergenic spacers within tRNA gene clusters; one cluster being located downstream from the atpA gene and the other upstream from the psbD gene. The endpoint near the atpA gene is very close to one endpoint of a 20 kb inversion in wheat (Howe et al. 1983; Quigley and Weil 1985). Comparison of the restriction site maps gives an estimated sequence divergence of 3.7% for the lettuce and Barnadesia genomes. This value is relatively low compared to previous estimates for other angiosperm groups, suggesting a high degree of sequence conservation in the Asteraceae.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0983
    Keywords: Chloroplast genome evolution ; Inverted repeat ; Inversion ; Repeated sequence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have compared the sequence organization of four previously uncharacterized legume chloroplast DNAs - from alfalfa, lupine, wisteria and subclover — to that of legume chloroplast DNAs that either retain a large, ribosomal RNA-encoding inverted repeat (mung bean) or have deleted one half of this repeat (broad bean). The circular, 126 kilobase pair (kb) alfalfa chloroplast genome, like those of broad bean and pea, lacks any detectable repeated sequences and contains only a single set of ribosomal RNA genes. However, in contrast to broad bean and pea, alfalfa chloroplast DNA is unrearranged (except for the deletion of one segment of the inverted repeat) relative to chloroplast DNA from mung bean. Together with other findings reported here, these results allow us to determine which of the four possible inverted repeat configurations was deleted in the alfalfa-pea-broad bean lineage, and to show how the present-day broad bean genome may have been derived from an alfalfa-like ancestral genome by two major sequence inversions. The 147 kb lupine chloroplast genome contains a 22 kb inverted repeat and has essentially complete colinearity with the mung bean genome. In contrast, the 130 kb wisteria genome has deleted one half of the inverted repeat and appears colinear with the alfalfa genome. The 140 kb subclover genome has been extensively rearranged and contains a family of at least five dispersed repetitive sequence elements, each several hundred by in size; this is the first report of dispersed repeats of this size in a land plant chloroplast genome. We conclude that the inverted repeat has been lost only once among legumes and that this loss occurred prior to all the other rearrangements observed in subclover, broad bean and pea. Of those lineages that lack the inverted repeat, some are stable and unrearranged, other have undergone a moderate amount of rearrangement, while still others have sustained a complex series of rearrangement either with or without major sequence duplications and transpositions.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0983
    Keywords: Gene mapping ; Rearrangements ; Chloroplast DNA evolution ; Inverted repeat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Cloned genes from tobacco, spinach, and pea were used as hybridization probes to localize 36 protein genes on the chloroplast chromosomes of four legumes — mung bean, common bean, soybean, and pea. The first three chloroplast DNAs (cpDNAs), all of which retain a large inverted repeat, have an identical gene order with but one exception. A 78 kb segment encompassing nearly the entire large single copy region is inverted in mung bean and common bean relative to soybean and non-legumes. The simplest evolutionary explanation for this difference is a 78 kb inversion, with one endpoint between rps8 and infA and the second between psbA and rpl2. However, we can not rule out a two-step re-arrangement (consisting of successive expansion and contraction of the inverted repeat) leading to the relocation of a block of six ribosomal protein genes (rps19-rps8) from one end of the large single copy region to the other. Analysis of gene locations in pea cpDNA, which lacks the large inverted repeat, combined with cross-hybridization studies using 59 clones covering the mung bean genome, leads to a refined picture of the position and nature of the numerous rearrangements previously described in the pea genome. A minimum of eight large inversions are postulated to account for these rearrangements. None of these inversions disrupt groups of genes that are transcriptionally linked in angiosperm cpDNA. Rather, the end-points of inversions are associated with relatively spacer-rich segments of the genome, many of which contain tRNA genes. All of the pea-specific inversions are shown to be positionally distinct from those recently described in a closely related legume, broad bean.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...