Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A gene corresponding to a maltogenic amylase (MAase) in Lactobacillus gasseri ATCC 33323 (lgma) was cloned and expressed in Escherichia coli. The recombinant LGMA was efficiently purified 24.3-fold by one-step Ni-NTA affinity chromatography. The final yield and specific activity of the purified recombinant LGMA were 68% and 58.7 U/mg, respectively. The purified enzyme exhibited optimal activity for β-CD hydrolysis at 55 °C and pH 5. The relative hydrolytic activities of LGMA to β-CD, soluble starch or pullulan was 8:1:1.9. The activity of LGMA was strongly inhibited by most metal ions, especially Zn2+, Fe2+, Co2+ and by EDTA. LGMA possessed some unusual properties distinguishable from typical MAases, such as being in a tetrameric form, having hydrolyzing activity towards the α-(1,6)-glycosidic linkage and being inhibited by acarbose.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0749-503X
    Keywords: yeast ; PMR1 ; Hansenula polymorpha ; Ca2+-ATPase ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: A gene homologous to Saccharomyces cerevisiae PMR1 has been cloned in the methylotrophic yeast Hansenula polymorpha. The partial DNA fragment of the H. polymorpha homologue was initially obtained by a polymerase chain reaction and used to isolate the entire gene which encodes a protein of 918 amino acids. The putative gene product contains all ten of the conserved regions observed in P-type ATPases. The cloned gene product exhibits 60·3% amino acid identity to the S. cerevisiae PMR1 gene product and complemented the growth defect of a S. cerevisiae pmr1 null mutant in the EGTA-containing medium. The results demonstrate that the H. polymorpha gene encodes the functional homologue of the S. cerevisiae PMR1 gene product, a P-type Ca2+-ATPase. The DNA sequence of the H. polymorpha homologue has been submitted to GenBank with the Accession Number U92083. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-6776
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary To characterize the molecular properties of CGTase from alkalophilic Bacillus sp. E1 (BCGTE1), a genomic clone for a CGTase was isolated. Expression of recombinant BCGTE1 in E. coli was analyzed by immunoblotting. It showed that the nascent recombinant BCGTE1 expressed was 87 kDa but it was processed into the mature enzyme of 81 kDa. With the process it was secreted predominantly into the culture medium via periplasmic space. This feature is different from other Bacillus CGTases expressed in E. coli, which were present mostly in the periplasmic space.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0006-3592
    Keywords: recombinant Yarrowia lipolytica ; heterologous protein expression ; improvement of rice α-amylase productivity ; cyclic fed-batch culture ; bioprocess control strategy ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A cyclic fed-batch bioprocess is designed and a significant improvement of rice α-amylase productivity of recombinant Yarrowia lipolytica is illustrated. A bioprocess control strategy developed and reported here entails use of a genetically stable recombinant cloned for heterologous protein, use of optimized media for cell growth and enzyme production phases, and process control strategy enabling high cell-density culture and high α-amylase productivity. This process control can be achieved through maintaining a constant optimal specific cell growth rate at a predetermined value (i.e., 0.1 h-1), controlling medium feed rate commensurate with the cell growth rate, and maintaining a high cell-density culture (i.e., 60-70 g/L) for high productivity of cloned heterologous protein. The volumetric enzyme productivity (1,960 units/L · h) achieved from the cyclic fed-batch process was about 3-fold higher than that of the fed-batch culture process (630 units/L · h). © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:379-385, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...