Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0789
    Keywords: Earthworm ; Enchytraeid ; Tillage ; Organic matter ; Biocide ; Agroecosystems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Earthworm and enchytraeid densities and biomass were sampled over an 18-month period in conventional and no-tillage agroecosystems. Overall, earthworm densities and biomass in the no-till system were 70% greater than under conventional tilling, and enchytraeid densities and biomass in the no-till system were 50%–60% greater. To assess the role of annelids in the breakdown of soil organic matter, carbofuran was applied to field enclosures and target (earthworm and enchytraeid biomass, standing stocks of organic matter) and non-target effects (bacteria, fungi, protozoa, nematode and microarthropod densities, litter decay rates, plant biomass) were determined in two 10-month studies. In the winter-fall study, carbofuran reduced the annelid biomass, and total soil organic matter standing stocks were 47% greater under no-till with carbofuran compared to control enclosures. Twelve percent of the difference could have been due to non-target effects of carbofuran, as determined from litterbag decay rates. In the summer-spring study, carbofuran again significantly reduced the annelid biomass, and treated pens in the no-till area had significantly greater standing stocks of fine organic matter (43%–45%). Although the densities of bacteria and nematodes were reduced in carbofuran-treated litterbags under a no-till system, the rates of decay were not reduced and estimates of the amount of organic matter processed could not be adjusted for non-target effects. A 76% difference in the standing stock of coarse organic matter between control and carbofuran-treated pens in the conventional-till system indicated further non-target effects. We concluded that our estimates of the amount of organic matter processed by annelids in no-till and conventionally tilled agroecosystems represented a maximum potential because of the confounding non-target effects of carbofuran.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Key words Earthworms ; Biomass ; Abundance ; Manure ; Inorganic fertilizer ; Agroecosystems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The dynamics of earthworm populations were investigated in continuously-cropped, conventional disk-tilled corn agroecosystems which had received annual long-term (6 years) amendments of either manure or inorganic fertilizer. Earthworm populations were sampled at approximately monthly intervals during the autumn of 1994 and spring and autumn of 1995 and 1996. The dominant earthworm species were Lumbricus terrestris L. and Aporrectodea tuberculata (Eisen), which comprised 50–60% and 8–13%, respectively, of the total annual earthworm biomass. Lumbricus rubellus (Hoffmeister) and Aporrectodea trapezoides (Dugés) were much less abundant and contributed a small fraction of total earthworm biomass. Earthworm numbers and biomass were significantly greater in manure-amended plots compared to inorganic fertilizer-treated plots during the majority of the study period. Seasonal fluctuations in earthworm numbers and biomass were attributed to changes in soil temperature and moisture, and cultivation. Unfavorable climatic conditions in the summer and autumn of 1995 caused earthworm abundance and biomass to decline significantly. Mature L. terrestris, L. rubellus and A. tuberculata were most abundant in May and June of 1995 and 1996, and cocoon production was greatest in June and July 1995 and June 1996. Recruitment of juveniles of Lumbricus spp. and Aporrectodea spp. into earthworm communities occurred primarily in the autumn. Long-term amendments of manure or inorganic fertilizer did not change the species composition of earthworm communities in these agroecosystems. The earthworm populations in both manure and inorganic fertilizer plots have declined significantly after 5 years of continuously-cropped corn.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0789
    Keywords: Key words Dead roots ; Fluorescein diacetate-active hyphae ; Field mesocosms ; Live roots ; Mor humus ; Mycorrhizae ; New Jersey Pinelands ; Spodosolic forest soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of live and dead roots on soil fungi were investigated experimentally in a spodosolic soil of the New Jersey Pinelands. Field mesocosm plots were constructed to have a layer of either C- and N-rich organic soil or a vermiculite substitute overlying a layer of sandy mineral soil with a very low organic content. The plots were also supplied with live pitch pine and blueberry roots or dead pitch pine roots in varying quantities based on naturally occurring densities (half, same, and double the ambient quantities). All plots were sampled 1 year after construction (June 1991), and three more times in two subsequent years (November 1991, June 1992, June 1993). In the presence of live roots, fluorescein diacetate-determined (FDA-active) fungal hyphae, total fungal hyphae, and soil moisture decreased significantly in the organic material, while no change was associated with the dead roots. The FDA-active fungal length in the live-root plots ranged from 40 to 165 m g–1 soil, and from 55 to 335 m g–1 soil in the dead-root plots. While the total fungal length in live-root plots remained constant over time (∼3000 m g–1 soil), the total fungal length in the dead-root plots increased from an initial value of 3000 to 〉4000 m g–1 soil at the conclusion of the study. Fungal lengths in mineral soil were higher under organic material than under the vermiculite substitute. Soil moisture was higher in the presence of live roots in mineral soils, but this did not increase the fungal abundance. Inputs of dead roots did not alter the fungal abundance. Overall, we demonstrated that live and dead roots had different effects on fungal abundance in soils with contrasting qualities, and in a spodosolic forest soil, roots could have ecosystem effects very different from those in agricultural soils.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0789
    Keywords: Key words Earthworm ; Nitrogen excretion rate ; 15N ; Agroecosystem ; Stable isotopes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Nitrogen excretion rates of 15N-labeled earthworms and contributions of 15N excretion products to organic (dissolved organic N) and inorganic (NH4-N, NO3-N) soil N pools were determined at 10  °C and 18  °C under laboratory conditions. Juvenile and adult Lumbricus terrestris L., pre-clitellate and adult Aporrectodea tuberculata (Eisen), and adult Lumbricus rubellus (Hoffmeister) were labeled with 15N by providing earthworms with 15N-labeled organic substrates for 5–6 weeks. The quantity of 15N excreted in unlabeled soil was measured after 48 h, and daily N excretion rates were calculated. N excretion rates ranged from 274.4 to 744 μg N g–1 earthworm fresh weight day–1, with a daily turnover of 0.3–0.9% of earthworm tissue N. The N excretion rates of juvenile L. terrestris were significantly lower than adult L. terrestris, and there was no difference in the N excretion rates of pre-clitellate and adult A. tuberculata. Extractable N pools, particularly NH4-N, were greater in soils incubated with earthworms for 48 h than soils incubated without earthworms. Between 13 and 40% of excreted 15N was found in the 15N-mineral N (NH4-N+NO3-N) pool, and 13–23% was in the 15N-DON pool. Other fates of excreted 15N may have been incorporation in microbial biomass, chemical or physical protection in non-extractable N forms, or gaseous N losses. Earthworm excretion rates were combined with earthworm biomass measurements to estimate N flux from earthworm populations through excretion. Annual earthworm excretion was estimated at 41.5 kg N ha–1 in an inorganically-fertilized corn agroecosystem, and was equivalent to 22% of crop N uptake. Our results suggest that the earthworms could contribute significantly to N cycling in corn agroecosystems through excretion processes.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Key words Earthworms ; Secondary production ; Nitrogen ; Agroecosystems ; Efficiency quotients
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Production was estimated for Aporrectodea spp. and Lumbricus spp. populations in corn agroecosystems with a 5-year history of manure or inorganic fertilizer applications during 1994–1995 and 1995–1996. Earthworm biomass and production were greater in manure than inorganic fertilizer plots, although biomass and production declined by about 50% between 1994–1995 and 1995–1996 due to unfavorable climatic conditions. Production was highest during the spring and autumn when soil temperatures were between 4 and 22°C. Production was higher in Lumbricus spp. than Aporrectodea spp. populations due to greater Lumbricus spp. biomass. Aporrectodea spp. production was 3.47–16.14 g ash-free dry weight (AFDW) m–2 year–1, while Lumbricus spp. production was 6.09–18.11 g AFDW m–2 year–1, depending on the fertilizer treatment and the method used to estimate production. However, production estimates from the instantaneous growth rate method were within 27% of the values calculated using the size-frequency method. Nitrogen flux through earthworms was used to estimate efficiency quotients. Net production efficiency (P/A) ranged from 0.64 to 0.76, assimilation efficiency (A/C) ranged from 0.1 to 0.3, and gross production efficiency (P/C) ranged from 0.06 to 0.22. Annual N flux through earthworm populations was higher in manure than inorganic fertilizer plots, and ranged from 2.95 to 5.47 g N m–2 year–1 in 1994–1995 and 1.76 to 2.92 g N m–2 year–1 in 1995–1996. The N flux through earthworms represented an amount equivalent to 16–30% of crop N uptake during 1994–1995 and 11–18% of crop N uptake during 1995–1996. We concluded that the effects of earthworms on N cycling in corn agroecosystems were substantial, and that N flux through earthworms was influenced significantly by fertilizer amendments.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...