Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-04-08
    Description: Despite the high prevalence and poor outcome of patients with metastatic lung cancer the mechanisms of tumour progression and metastasis remain largely uncharacterized. Here we modelled human lung adenocarcinoma, which frequently harbours activating point mutations in KRAS and inactivation of the p53 pathway, using conditional alleles in mice. Lentiviral-mediated somatic activation of oncogenic Kras and deletion of p53 in the lung epithelial cells of Kras(LSL-G12D/+);p53(flox/flox) mice initiates lung adenocarcinoma development. Although tumours are initiated synchronously by defined genetic alterations, only a subset becomes malignant, indicating that disease progression requires additional alterations. Identification of the lentiviral integration sites allowed us to distinguish metastatic from non-metastatic tumours and determine the gene expression alterations that distinguish these tumour types. Cross-species analysis identified the NK2-related homeobox transcription factor Nkx2-1 (also called Ttf-1 or Titf1) as a candidate suppressor of malignant progression. In this mouse model, Nkx2-1 negativity is pathognomonic of high-grade poorly differentiated tumours. Gain- and loss-of-function experiments in cells derived from metastatic and non-metastatic tumours demonstrated that Nkx2-1 controls tumour differentiation and limits metastatic potential in vivo. Interrogation of Nkx2-1-regulated genes, analysis of tumours at defined developmental stages, and functional complementation experiments indicate that Nkx2-1 constrains tumours in part by repressing the embryonically restricted chromatin regulator Hmga2. Whereas focal amplification of NKX2-1 in a fraction of human lung adenocarcinomas has focused attention on its oncogenic function, our data specifically link Nkx2-1 downregulation to loss of differentiation, enhanced tumour seeding ability and increased metastatic proclivity. Thus, the oncogenic and suppressive functions of Nkx2-1 in the same tumour type substantiate its role as a dual function lineage factor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088778/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088778/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winslow, Monte M -- Dayton, Talya L -- Verhaak, Roel G W -- Kim-Kiselak, Caroline -- Snyder, Eric L -- Feldser, David M -- Hubbard, Diana D -- DuPage, Michel J -- Whittaker, Charles A -- Hoersch, Sebastian -- Yoon, Stephanie -- Crowley, Denise -- Bronson, Roderick T -- Chiang, Derek Y -- Meyerson, Matthew -- Jacks, Tyler -- K08 CA154784/CA/NCI NIH HHS/ -- K99-CA151968/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- P30 CA014051-36/CA/NCI NIH HHS/ -- P30 CA014051-37/CA/NCI NIH HHS/ -- P30 CA014051-38/CA/NCI NIH HHS/ -- P30 CA014051-39/CA/NCI NIH HHS/ -- P30 CA014051-40/CA/NCI NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- R00 CA151968/CA/NCI NIH HHS/ -- R01 CA109038/CA/NCI NIH HHS/ -- T32-HL007627/HL/NHLBI NIH HHS/ -- U01 CA084306/CA/NCI NIH HHS/ -- U01 CA084306-11/CA/NCI NIH HHS/ -- U01 CA084306-12/CA/NCI NIH HHS/ -- U01 CA084306-13/CA/NCI NIH HHS/ -- U01-CA84306/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 May 5;473(7345):101-4. doi: 10.1038/nature09881. Epub 2011 Apr 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21471965" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/genetics/physiopathology ; Animals ; Cell Differentiation ; Cell Line, Tumor ; Disease Models, Animal ; Down-Regulation ; *Gene Expression Regulation, Neoplastic ; HMGA2 Protein/genetics ; Humans ; Lung Neoplasms/genetics/physiopathology ; Mice ; Nuclear Proteins/*genetics/*metabolism ; Transcription Factors/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-22
    Description: The identification of succinate dehydrogenase (SDH), fumarate hydratase (FH) and isocitrate dehydrogenase (IDH) mutations in human cancers has rekindled the idea that altered cellular metabolism can transform cells. Inactivating SDH and FH mutations cause the accumulation of succinate and fumarate, respectively, which can inhibit 2-oxoglutarate (2-OG)-dependent enzymes, including the EGLN prolyl 4-hydroxylases that mark the hypoxia inducible factor (HIF) transcription factor for polyubiquitylation and proteasomal degradation. Inappropriate HIF activation is suspected of contributing to the pathogenesis of SDH-defective and FH-defective tumours but can suppress tumour growth in some other contexts. IDH1 and IDH2, which catalyse the interconversion of isocitrate and 2-OG, are frequently mutated in human brain tumours and leukaemias. The resulting mutants have the neomorphic ability to convert 2-OG to the (R)-enantiomer of 2-hydroxyglutarate ((R)-2HG). Here we show that (R)-2HG, but not (S)-2HG, stimulates EGLN activity, leading to diminished HIF levels, which enhances the proliferation and soft agar growth of human astrocytes. These findings define an enantiomer-specific mechanism by which the (R)-2HG that accumulates in IDH mutant brain tumours promotes transformation and provide a justification for exploring EGLN inhibition as a potential treatment strategy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656605/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656605/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koivunen, Peppi -- Lee, Sungwoo -- Duncan, Christopher G -- Lopez, Giselle -- Lu, Gang -- Ramkissoon, Shakti -- Losman, Julie A -- Joensuu, Paivi -- Bergmann, Ulrich -- Gross, Stefan -- Travins, Jeremy -- Weiss, Samuel -- Looper, Ryan -- Ligon, Keith L -- Verhaak, Roel G W -- Yan, Hai -- Kaelin, William G Jr -- R01 CA068490/CA/NCI NIH HHS/ -- R01 CA140316/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Feb 15;483(7390):484-8. doi: 10.1038/nature10898.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biocenter Oulu, Department of Medical Biochemistry and Molecular Biology, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22343896" target="_blank"〉PubMed〈/a〉
    Keywords: Astrocytes/cytology/drug effects/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Cell Transformation, Neoplastic/*drug effects/genetics/*metabolism ; Dioxygenases/genetics/*metabolism ; Enzyme Activation/drug effects ; Glioma/enzymology/genetics/metabolism/pathology ; Glutarates/*chemistry/metabolism/*pharmacology ; Humans ; Hypoxia-Inducible Factor 1/metabolism ; Hypoxia-Inducible Factor-Proline Dioxygenases ; Isocitrate Dehydrogenase/genetics/metabolism ; Nuclear Proteins/genetics/*metabolism ; Oncogenes ; Procollagen-Proline Dioxygenase/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...