Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Publication Date: 2014-11-14
    Description: Female mosquitoes are major vectors of human disease and the most dangerous are those that preferentially bite humans. A 'domestic' form of the mosquito Aedes aegypti has evolved to specialize in biting humans and is the main worldwide vector of dengue, yellow fever, and chikungunya viruses. The domestic form coexists with an ancestral, 'forest' form that prefers to bite non-human animals and is found along the coast of Kenya. We collected the two forms, established laboratory colonies, and document striking divergence in preference for human versus non-human animal odour. We further show that the evolution of preference for human odour in domestic mosquitoes is tightly linked to increases in the expression and ligand-sensitivity of the odorant receptor AaegOr4, which we found recognizes a compound present at high levels in human odour. Our results provide a rare example of a gene contributing to behavioural evolution and provide insight into how disease-vectoring mosquitoes came to specialize on humans.〈br /〉〈br /〉〈a href="" target="_blank"〉〈img src="" border="0"〉〈/a〉   〈a href="" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McBride, Carolyn S -- Baier, Felix -- Omondi, Aman B -- Spitzer, Sarabeth A -- Lutomiah, Joel -- Sang, Rosemary -- Ignell, Rickard -- Vosshall, Leslie B -- 5UL1TR000043/TR/NCATS NIH HHS/ -- HHSN272200900039C/AI/NIAID NIH HHS/ -- HHSN272200900039C/PHS HHS/ -- K99 DC012069/DC/NIDCD NIH HHS/ -- R00 DC012069/DC/NIDCD NIH HHS/ -- UL1 TR000043/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Nov 13;515(7526):222-7. doi: 10.1038/nature13964.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York 10065, USA [2] Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA. ; Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York 10065, USA. ; Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, Sundsvagen 14, 230 53 Alnarp, Sweden. ; Center for Virus Research, Kenya Medical Research Institute, PO Box 54840 - 00200, Off Mbagathi Way, Nairobi, Kenya.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="" target="_blank"〉PubMed〈/a〉
    Keywords: Aedes/*physiology ; Alleles ; Animals ; Arthropod Antennae/metabolism ; *Biological Evolution ; Female ; Forests ; Gene Expression Profiling ; Host Specificity ; Humans ; Ketones/analysis/metabolism ; Ligands ; Male ; Molecular Sequence Data ; Receptors, Odorant/*metabolism ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1351
    Keywords: Key words Olfaction ; Locust ; Schistocerca gregaria ; Deutocerebrum ; Electrophysiology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Physiological and morphological characteristics of antennal lobe neurons of solitary and gregarious fifth-instar nymphs of the desert locust, Schistocerca gregaria, were studied using intracellular recording and staining techniques. Physiological characteristics of antennal lobe neurons of both locust phases responding to stage-dependent aggregation pheromones, egg-laying attractants, a putative sex pheromone and plant-associated volatiles are described. Antennal lobe neurons showed excitatory, inhibitory, combined excitatory and inhibitory and delayed responses. In addition, one neuron␣showing an initial inhibition followed by an excitation and inhibition response was found. Pheromone-specific-, plant-specific- and pheromone-plant-generalist neurons were found in both locust phases. Antennal lobe neurons displayed stage- and phase-dependent differences in the processing of aggregation pheromone component input. Nymphal antennal lobe neurons showed stage-dependent response characteristics highly correlated with the preferential behavioural attraction to the nymphal aggregation pheromone. Phase-dependent differences were found in the response spectra and the sensitivity of the same neuron types. Neurons of solitary locusts responded significantly more frequently to some of the tested components than neurons of gregarious locusts. Furthermore, antennal lobe neurons of solitary locusts showed a higher sensitivity to most of the tested compounds.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...